Comparison of Microstructure and Properties of Ti-6Al-7Nb Alloy Processed by Different Powder Metallurgy Routes

Article Preview

Abstract:

The Ti-6Al-7Nb alloy was specially developed to replace the well-known Ti-6Al-4V alloy in biomedical applications due to supposed cytotoxicity of vanadium in the human body. This alloy is normally fabricated by conventional ingot metallurgy by forging bulk material. Nevertheless, powder metallurgy techniques could be used to obtain this alloy with specific properties. This is because by changing the processing parameters, such as the sintering temperature, it is possible to vary the porosity level and to tailor the final properties. This work deals with the production of the Ti-6Al-7Nb alloy by means of the master alloy addition variant of the blending elemental approach. The powder is processed by means of different powder metallurgy routes considering diverse processing conditions for each method. The materials are characterised in terms of microstructural features, relative density and hardness. Homogeneous microstructures as well as properties comparable to those of the wrought alloy are generally obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-179

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Faller, F.S. Froes, The Use of Titanium in Family Automobiles: Current Trends, JOM, 53 (2001) 27-28.

DOI: 10.1007/s11837-001-0143-3

Google Scholar

[2] M. Long, H.J. Rack, Titanium Alloys in Total Joint Replacement - A Materials Science Perspective, Biomaterials, 19 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[3] M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and Materials Transactions A, 33 (2002) 477-486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[4] M. Semlitsch, F. Staub, W. H., Titanium-aluminium-niobium Alloy Development for Biocompatible, High Strength Surgical Implants, Biomedizinische Technik/Biomedical Engineering, 30 (1985) 334–339.

DOI: 10.1515/bmte.1985.30.12.334

Google Scholar

[5] V.A. Druz, V.S. Moxson, R. Chernenkoff, W.F. Jandeska Jnr, J. Lynn, Blending an Elemental Approach to Volume Titanium Manufacture, Metal Powder Report, 61 (2006) 16-21.

DOI: 10.1016/s0026-0657(06)70736-6

Google Scholar

[6] M.J. Donachie, Titanium. A Technical Guide, 2nd Edition ed., ASM International, Ohio, USA, 2000.

Google Scholar

[7] L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer, E. Gordo, Inductive Hot-pressing of Titanium and Titanium Alloy Powders, Materials Chemistry and Physics, 131 (2012) 672-679.

DOI: 10.1016/j.matchemphys.2011.10.034

Google Scholar

[8] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, in: A. International (Ed.), Ohio, USA, 1998.

Google Scholar

[9] C. Suryanarayana, Mechanical Alloying and Milling, Progress in Materials Science, 46 (2001) 1-184.

Google Scholar

[10] L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, Influence of Powder Characteristics on Sintering Behaviour and Properties of PM Ti Alloys Produced from Prealloyed Powder and Master Alloy, Powder Metallurgy, 54 (2011) 543-550.

DOI: 10.1179/003258910x12827272082623

Google Scholar

[11] J.L. Murray, Phase Diagrams of Binary Titanium Alloys, 1st ed., ASM International, 1987.

Google Scholar

[12] N.L. Peterson, Diffusion in Rfractory metals, WADD Technical Report, (1960) 123-149.

Google Scholar

[13] E.O. Kirkendall, Transaction AIME, 147 (1942) 104.

Google Scholar

[14] A.D. Smigelskas, E.O. kirkendall, Transaction AIME, 171 (1947) 130.

Google Scholar

[15] F. Seitz, On the Porosity Observed in the Kirkendall Effect, Acta Metallurgica, 3 (1953) 355–369.

DOI: 10.1016/0001-6160(53)90112-6

Google Scholar

[16] L. Bolzoni, E.M. Ruiz-Navas, T. Weissgaerber, B. Kieback, E. Gordo, Mechanical Behaviour of Pressed and Sintered CP Ti and Ti-6Al-7Nb Alloy Obtained from Master Alloy Addition Powder, Journal of the Mechanical Behavior of Biomedical Materials, Accepted Manuscript (2012).

DOI: 10.1016/j.jmbbm.2012.08.022

Google Scholar

[17] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering, Materials Science and Engineering R: Reports, 63 (2009) 127-287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[18] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method, Journal of Material Science, 41 (2006) 763-777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[19] S. Abkowitz, D. Rowell, Superior Fatigue Properties for Blended Elemental P/M Ti-6Al-4V, Journal of Metals, (1986) 36-39.

DOI: 10.1007/bf03257786

Google Scholar

[20] F.H. Froes, O.M. Ivasishin, V.S. Moxson, D.G. Savvakin, K.A. Bondareva, A.M. Demidik, Cost-effective Synthesis of Ti–6Al–4V Alloy Components via the Blended Elemental P/M Approach, in: W. TMS, PA (Ed.) Symposium on TMS Symposium on High Performance Metallic Materials for Cost Sensitive Applications, Seattle, WA, 2002.

DOI: 10.1002/9781118788028.ch14

Google Scholar

[21] J.E. Smugeresky, D.B. Dawson, New Titanium Alloys for Blended Elemental Powder Processing, Powder Technology, 30 (1981) 87-94.

DOI: 10.1016/0032-5910(81)85030-9

Google Scholar

[22] D. Eylon, P.R. Smith, S.W. Schwenker, F.H. Froes, Status of Titanium Powder Metallurgy, in: Webster/Young (Ed.) Industrial Applications of Titanium and Zirconium: 3rd Conference, ASTM International, 1984, pp.48-65.

DOI: 10.1520/stp32513s

Google Scholar

[23] V.A.R. Henriques, C.E. Bellinati, C.R.M. da Silva, Production of Titanium Alloys for Medical Implants by Powder Metallurgy, Key Engineering Materials Advanced Powder Technology II (2001) 443-448.

DOI: 10.4028/www.scientific.net/kem.189-191.443

Google Scholar

[24] A. Böhm, B. Kieback, Investigation of Swelling Behaviour of Ti-Al Elemental Powder Mixtures during Reaction Sintering, Zeitschrift für Metallkunde, 89 (1998) 90-95.

Google Scholar

[25] D. Henry, Materials and Coatings for Medical Devices: Cardiovascular, ASM International, Ohio, USA, 2009.

Google Scholar

[26] M. Semlitsch, H. Weber, R. Steger, Fifteen Years Experience with Ti-6AI-7Nb Alloy for Joint Replacements, in: P.A. Blenkinsop, Evans, W. J., Flower, H. M. (Ed.) Titanium '95: Science and Technology, Birmingham - UK, 1995, pp.1742-1759.

DOI: 10.1515/bmte.1995.40.12.347

Google Scholar

[27] R.I. Jaffee, I.E. Campbell, The Effect of Oxygen, Nitrogen and Hydrogen on Iodide Refined Titanium, Transactions of the American Institute of Mining and Metallurgical Engineers, 185 (1949) 646-654.

DOI: 10.1007/bf03398910

Google Scholar

[28] R.I. Jaffee, H.R. Ogden, D.J. Maykuth, Alloys of Titanium with Carbon, Oxygen and Nitrogen, Transactions of the American Institute of Mining and Metallurgical Engineers, 188 (1950) 1261-1266.

DOI: 10.1007/bf03399142

Google Scholar

[29] W.L. Finlay, J.A. Snyder, Effects of Three Interstitial Solutes (Nitrogen, Oxygen and Carbon) on the Mechanical Properties of High-purity Alpha Titanium, Journal of Metals 188 (1950) 277-286.

DOI: 10.1007/bf03399001

Google Scholar

[30] L. Murugesh, K.T. Venkateswara Rao, R.O. Ritchie, Powder Processing of Ductile-phase-toughened Nb-Nb3Al in situ Composites, Materials Science and Engineering A, 189 (1994) 201-208.

DOI: 10.1016/0921-5093(94)90416-2

Google Scholar

[31] C. Triveño Rios, P. Ferrandini, R. Caram, Fracture Toughess of the Eutectic Alloy Al3NB-Nb2Al, Materials Letters, 57 (2003) 3949-3953.

DOI: 10.1016/s0167-577x(03)00245-3

Google Scholar

[32] R.M. German, Powder Metallurgy Science, 2nd Edition ed., MPIF - Metal Powder Industries Federation, Princeton, USA, 1994.

Google Scholar