Fracture Toughness of Powder Metallurgy and Ingot Titanium Alloys – A Review

Abstract:

Article Preview

Powder metallurgy (PM) is potentially capable of producing homogeneous titanium alloys at relative low cost compared to ingot metallurgy (IM). There are many established PM methods for consolidating metal powders to near net shapes with a high degree of freedom in alloy composition and resulting microstructural characteristics. The mechanical properties of titanium and its alloys processed using a powder metallurgical route have been studied in great detail; one major concern is that ductility and toughness of materials produced by a PM route are often lower than those of corresponding IM materials. The aim of this paper is to review the fracture toughness of both PM and IM titanium alloys. The effects of critical factors such as interstitial impurities, microstructural features and heat treatment on fracture toughness are also discussed

Info:

Periodical:

Edited by:

M. Ashraf Imam, F. H. (Sam) Froes and Ramana G. Reddy

Pages:

143-160

Citation:

A. P. Singh et al., "Fracture Toughness of Powder Metallurgy and Ingot Titanium Alloys – A Review", Key Engineering Materials, Vol. 551, pp. 143-160, 2013

Online since:

May 2013

Export:

Price:

$41.00

[1] International Titanium Association, Titanium: The Ultimate Choice, Author, Boulder, Colorado1999.

[2] C. M. Ward-Close, A. B. Godfrey, and S. R. Thompson, Titanium made the EDO way should see prices drop, Metal Powder Report, vol. 60, pp.20-25, (2005).

DOI: https://doi.org/10.1016/s0026-0657(05)70451-3

[3] C. Elias, J. H. C. Lima, R. Valiev, and M. Meyers, Biomedical applications of titanium and its alloys, JOM Journal of the Minerals, Metals and Materials Society, vol. 60, pp.46-49, (2008).

DOI: https://doi.org/10.1007/s11837-008-0031-1

[4] F. Froes and S. Haake, Materials and Science in Sports: Materials and Science in Sports Symposium, Coronado, California, April 22-25, 2001. Switzerland: TMS, (2001).

[5] M. A. Imam, F. H. Froes, and K. L. Housley, Titanium and titanium Alloys, in Kirk-Othmer Encyclopedia of Chemical Technology, ed: John Wiley & Sons, Inc., (2000).

DOI: https://doi.org/10.1002/0471238961.2009200119050107.a01.pub3

[6] M. J. Donachie, Titanium: A Technical Guide, 2 ed.: ASM International, (2000).

[7] ASM International. (2012, 15 May). Titanium and Titanium Alloys. Available: http: /www. asminternational. org/portal/site/www/SubjectGuideItem/?vgnextoid=bb53b4d68558d210VgnVCM100000621e010aRCRD#overview.

[8] G. Roza, Titanium: Understanding the Elements of the Periodic Table. New York: Rosen Central, (2008).

[9] V. N. Moiseyev, Applications of titanium and titanium alloys, in Titanium Alloys: Russian Aircraft and Aerospace Applications. vol. 5, ed: Taylor & Francis Group, 2006, pp.195-205.

DOI: https://doi.org/10.1201/9781420037678.ch6

[10] F. H. Froes, Titanium alloys, in Handbook of Advanced Materials: Enabling New Designs, J. K. Wessel, Ed., ed Hoboken, New Jersey: Wiley-Interscience, 2004, pp.271-320.

[11] Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys: Fundamentals and Applications, C. Leyens and M. Peters, Eds., ed: Wiley, 2003, pp.1-35.

DOI: https://doi.org/10.1002/3527602119.ch1

[12] G. Lutjering and J. C. Williams, Fundamental aspects, in Titanium, Second ed: Springer, 2007, pp.15-50.

[13] M. J. Donachie, Understnding Ti's metallurgy, in Titanium: A Technical Guide, 2 ed: ASM International, 2000, pp.21-36.

[14] R. Wanhill and S. Barter, Metallurgy and microstructure, in Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys, ed: SpringerBriefs in Applied Sciences and Technology, 2012, pp.5-9.

DOI: https://doi.org/10.1007/978-94-007-2524-9

[15] J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O. S. Es-Said, Tensile properties and microstructures of laser-formed Ti-6Al-4V, Journal of Materials Engineering and Performance, vol. 20, pp.203-212, Mar (2011).

DOI: https://doi.org/10.1007/s11665-010-9670-9

[16] H. Salimijazi, T. Coyle, and J. Mostaghimi, Vacuum plasma spraying: a new concept for manufacturing Ti-6Al-4V structures, JOM Journal of the Minerals, Metals and Materials Society, vol. 58, pp.50-56, (2006).

DOI: https://doi.org/10.1007/s11837-006-0083-z

[17] E. Collings, Materials Properties Handbook: Titanium Alloys: Asm Intl, (1994).

[18] G. Lutjering and J. C. Williams, Technological aspects, in Titanium, Second ed: Springer, 2007, pp.59-64.

[19] M. J. Donachie, Ingot metallurgy and mill products, in Titanium: A Technical Guide, 2 ed: ASM International, 2000, pp.25-30.

[20] F. Yang, D. L. Zhang, H. Y. Lu, and B. Gabbitas, Preparation, microstructure and properties of Ti-6Al-4V rods by powder compact extrusion of powder mixture, in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.70-75.

DOI: https://doi.org/10.4028/www.scientific.net/kem.520.70

[21] D. Tricker, M. Jackson, and R. Dashwood, Direct extrusion of titanium alloy powder, Materials Technology, vol. 24, pp.174-179, Sep (2009).

DOI: https://doi.org/10.1179/106678509x12475882915411

[22] R. Lapovok and D. Tomus, Production of dense compact billet from Ti-alloy powder using equal channel angular extrusion, ARC Centre of Excellence for Design in Light Metals, Dept. of Materials Engineering, Monash University, Clayton, Melbourne, 4/ 06/ (2007).

[23] H. Wang, Z. Zak Fang, and P. Sun, A critical review of mechanical properties of powder metallurgy titanium, International Journal of Powder Metallurgy, vol. 46, pp.45-57, (2010).

[24] D. Eylon, F. H. S. Froes, and S. Abkowitz, Titanium powder metallurgy alloys and composites, in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed American Society for Metals, 1998, pp.2192-2231.

[25] F. Froes and D. Eylon, Powder metallurgy of titanium alloys, International Materials Reviews, vol. 35, pp.162-184, (1990).

DOI: https://doi.org/10.1179/095066090790323984

[26] S. Abkowitz, S. Abkowitz, and H. Fisher, Breakthrough claimed for titanium PM, Metal Powder Report, vol. 66, pp.16-21, (2011).

DOI: https://doi.org/10.1016/s0026-0657(12)70015-2

[27] J. H. Moll and C. F. Yolton, Production of titanium powder, in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed: American Society for Metals, 1998, pp.382-399.

[28] R. M. German, Status of metal powder injection molding of titanium, International Journal of Powder Metallurgy, vol. 46, pp.11-17, (2010).

[29] M. Qian, Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication, International Journal of Powder Metallurgy, vol. 46, pp.29-44, Sep-Oct (2010).

[30] J. J. Conway and F. J. Rizzo, Hot isostatic pressing of metal powders, in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed American Society for Metals, 1998, pp.1425-1462.

[31] D. L. Zhang, S. Raynova, V. Nadakuduru, P. Cao, B. Gabbitas, and B. Robinson, Consolidation of titanium, and Ti-6Al-4V alloy powders by powder compact forging, in Light Metals Technology 2009. vol. 618-619, M. S. Dargusch and S. M. Keay, Eds., ed Stafa-Zurich: Trans Tech Publications Ltd, 2009, pp.513-516.

DOI: https://doi.org/10.4028/www.scientific.net/msf.618-619.513

[32] V. N. Nadakuduru, D. L. Zhang, S. Raynova, P. Cao, and B. Gabbitas, Mechanical behaviour of titanium, Ti-6Al-4V (wt%) alloy and Ti-47Al-2Cr (at%) alloy produced using powder compact forging, Advanced Materials Research, vol. 275, pp.186-191, (2011).

DOI: https://doi.org/10.4028/www.scientific.net/amr.275.186

[33] S. Raynova, D. L. Zhang, and B. Gabbitas, Tensile properties of Ti-6Al-4V discs produced by open die powder compact forging of pre-alloyed HDH powders, in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.289-294.

DOI: https://doi.org/10.4028/www.scientific.net/kem.520.289

[34] S. Raynova, D. L. Zhang, D. Polo, L. Gonthier, W. Egea, and V. N. Nadakuduru, Tensile properties and fracture behaviour of induction sintered Ti and Ti-6Al-4V (wt%) powder compacts, Advanced Materials Research, vol. 275, pp.196-199, (2011).

DOI: https://doi.org/10.4028/www.scientific.net/amr.275.196

[35] M. T. Jia, D. L. Zhang, and B. Gabbitas, Comparison of blended elemental (BE) and mechanical alloyed (MA) powder compact forging into Ti-6Al-4V rocker arms, in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.82-88.

DOI: https://doi.org/10.4028/www.scientific.net/kem.520.82

[36] G. Lutjering and J. C. Williams, Titanium, Second ed.: Springer, (2007).

[37] H. Margolin, Titanium alloys fatigue and fracture, in Fatigue Data Book: Light Structural Alloys, K. S. Dragolich and N. D. DiMatteo, Eds., ed Materials Park, OH: ASM International, 1995, pp.183-203.

[38] S. Lampman, Wrought titanium and titanium alloys, in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. vol. 2, 10 ed American Society for Metals, 1992, pp.1782-1886.

[39] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, vol. 243, pp.231-236, Mar (1998).

DOI: https://doi.org/10.1016/s0921-5093(97)00806-x

[40] K. V. Sudhakar, A comparative study on P/M and wrought titanium alloys, P/M Science & Technology Briefs, vol. 4, pp.22-24, (2002).

[41] H. Starrett and N. R. Ontko, Mechanical properties of elementally blended Ti-6Al-4V, DTIC Document1986.

DOI: https://doi.org/10.21236/ada176640

[42] S. M. El-Soudani, K. O. Yu, E. M. Crist, F. Sun, M. B. Campbell, T. S. Esposito, J. J. Phillips, V. Moxson, and V. A. Duz, Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications, Metallurgical and Materials Transactions A, pp.1-12, (2012).

DOI: https://doi.org/10.1007/s11661-012-1437-5

[43] Standard test method for linear elastic plane strain fracture toughness KIc of metallic materials, in ASTM E399 - 09, ed. Pennsylvania, US: ASTM (American Society for Testing and Materials), (2009).

DOI: https://doi.org/10.1520/e0399-12

[44] L. Wang, Z. B. Lang, and H. P. Shi, Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy, Transactions of Nonferrous Metals Society of China, vol. 17, pp. s639-s643.

[45] B. Van Hooreweder, D. Moens, R. Boonen, J. P. Kruth, and P. Sas, Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting, Advanced Engineering Materials, vol. 14, pp.92-97, Feb (2012).

DOI: https://doi.org/10.1002/adem.201100233

[46] J. P. Herteman, D. Eylon, and F. H. Froes, Mechanical-properties of advanced titanium powder-metallurgy compacts, Powder Metallurgy International, vol. 17, pp.116-119, (1985).

[47] M. M. Dewidar, H. C. Yoon, and J. K. Lim, Mechanical properties of metals for biomedical applications using powder metallurgy process: a review, Metals and Materials International, vol. 12, pp.193-206, Jun (2006).

DOI: https://doi.org/10.1007/bf03027531

[48] J. Chesnutt, C. Rhodes, and J. Williams, Relationship between mechanical properties, microstructure, and fracture topography in α+β titanium alloys, Fractography–microscopic cracking processes. ASTM STP, vol. 600, pp.99-138, (1976).

DOI: https://doi.org/10.1520/stp29194s

[49] K. Nagai, T. Yuri, T. Ogata, O. Umezawa, K. Ishikawa, T. Nishimura, T. Mizoguchi, and Y. Ito, Cryogenic mechanical properties of Ti–6Al–4V alloys with three levels of oxygen content, ISIJ International, vol. 31, pp.882-889, (1991).

DOI: https://doi.org/10.2355/isijinternational.31.882

[50] V. A. R. Henriques, S. L. G. Petroni, M. S. M. Paula, C. A. A. Cairo, and E. T. Galvani, Interstitial control in titanium alloys produced by powder metallurgy, in Advanced Powder Technology Vii. vol. 660-661, L. Salgado and F. Ambrozio, Eds., ed, 2010, pp.3-10.

DOI: https://doi.org/10.4028/www.scientific.net/msf.660-661.3

[51] V. N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications vol. 5: Taylor & Francis Group, (2006).

[52] L. P. Lefebvre and E. Baril, Effect of oxygen concentration and distribution on the compression properties on titanium foams, Advanced Engineering Materials, vol. 10, pp.868-876, Sep (2008).

DOI: https://doi.org/10.1002/adem.200800122

[53] H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Progress in Materials Science, vol. 26, pp.123-403, (1981).

DOI: https://doi.org/10.1016/0079-6425(81)90001-3

[54] M. Guclu, I. Ucok, and J. R. Pickens, Effect of oxygen content on properties of cast alloy Ti-6Al-4V. Warrendale: Minerals, Metals & Materials Society, (2004).

[55] M. L. Wasz, F. R. Brotzen, R. B. McLellan, and A. J. Griffin Jr, Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium, International Materials Reviews, vol. 41, pp.1-12, (1996).

DOI: https://doi.org/10.1179/imr.1996.41.1.1

[56] J. M. Oh, B. G. Lee, S. W. Cho, S. W. Lee, G. S. Choi, and J. W. Lim, Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V, Metals and Materials International, vol. 17, pp.733-736, Oct (2011).

DOI: https://doi.org/10.1007/s12540-011-1006-2

[57] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29Nb-13Ta-4. 6Zr alloy under solutionized and aged conditions, Materials transactions, vol. 50, p.2716, (2009).

DOI: https://doi.org/10.2320/matertrans.ma200904

[58] Z. Liu and G. Welsch, Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys, Metallurgical and Materials Transactions A, vol. 19, pp.527-542, (1988).

DOI: https://doi.org/10.1007/bf02649267

[59] D. Simbi and J. Scully, The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium, Materials Letters, vol. 26, pp.35-39, (1996).

DOI: https://doi.org/10.1016/0167-577x(95)00204-9

[60] J. Gu and D. Hardie, Effect of hydrogen on the tensile ductility of Ti-6Al-4V, Part 2. Fracture of pre-cracked tensile specimens, Journal of Materials Science, vol. 32, pp.609-617, Feb (1997).

[61] E. Nyberg, M. Miller, K. Simmons, and K. S. Weil, Manufacturers 'need better quality titanium PM powders', Metal Powder Report, vol. 60, pp.8-13, (2005).

DOI: https://doi.org/10.1016/s0026-0657(05)70496-3

[62] T. Horiya and T. Kishi, Fracture toughness of titanium alloys, Nippon Steel Tech. Rep. (Japan), vol. 62, pp.85-91, (1994).

[63] H. R. Ogden and R. I. Jaffee, The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys, TML-20 United States10. 2172/4370612Tue Feb 05 18: 36: 09 EST 2008DTIE; NSA-10-001388English, (1955).

DOI: https://doi.org/10.2172/4370612

[64] P. Pao, M. A. Imam, H. Jones, R. Bayles, J. Feng, and Tms, Effect of oxygen on fracture toughness and stress-corrosion cracking of Ti-6211. Warrendale: Minerals, Metals & Materials Soc, (2008).

[65] S. Seong, O. Younossi, and B. W. Goldsmit, Market prospects and emerging technologies, in Titanium: Industrial Base, Price Trends, and Technology Initiatives, ed: RAND Corporation, 2009, p.87.

[66] J. Hall, Hydride Precipitation in Ti-6 Al-4 V, Scandinavian Journal of Metallurgy, vol. 7, pp.277-281, (1978).

[67] L. P. Lefebvre, É. Baril, and M. Bureau, Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams, Journal of Materials Science: Materials in Medicine, vol. 20, pp.2223-2233, (2009).

DOI: https://doi.org/10.1007/s10856-009-3798-x

[68] I. I. Kornilov, Effect of oxygen on titanium and its alloys, Metal Science and Heat Treatment, vol. 15, pp.826-829, (1973).

[69] K. S. Chan, Relationships of fracture toughness and dislocation mobility in intermetallics, Metallurgical and Materials Transactions A, vol. 34, pp.2315-2328, (2003).

DOI: https://doi.org/10.1007/s11661-003-0295-6

[70] R. Ferguson and R. Berryman, Fracture mechanics evaluation of B-1 materials. Volume I. Text, ed: Rockwell international Los Angeles CA B-1 DIV, (1976).

[71] D. Cooper, Correlation study of fracture toughness of airframe forgings, TIMET Internal Report, Toronto Quality Control Dept1974.

[72] T. Horiya, H. Suzuki, and T. Kishi, Effect of microstructure and impurity elements on fracture toughness of Ti-6Al-4V alloy, Tetsu-to-Hagane(J. Iron Steel Inst. Jpn. ), vol. 75, pp.151-158, (1989).

DOI: https://doi.org/10.2355/tetsutohagane1955.75.12_2250

[73] Standard Specification for Powder Metallurgy (P/M) Titanium Alloy Structural Components, in ASTM B817 - 08, ed, (2008).

[74] E. Baril, L. P. Lefebvre, and Y. Thomas, Interstitial elements in titanium powder metallurgy: sources and control, Powder Metallurgy, vol. 54, pp.183-187, Jul (2011).

DOI: https://doi.org/10.1179/174329011x13045076771759

[75] Y. Lee, M. Peters, K. Grundhoff, and H. Schurmann, Effect of degassing treatment on microstructure and mechanical properties of P/M Ti-6Al-4V, ed, (1990).

[76] E. Tal-Gutelmacher and D. Eliezer, The hydrogen embrittlement of titanium-based alloys, JOM Journal of the Minerals, Metals and Materials Society, vol. 57, pp.46-49, (2005).

DOI: https://doi.org/10.1007/s11837-005-0115-0

[77] G. Gao and S. Dexter, Effect of hydrogen on creep behavior of Ti-6AI-4V alloy at room temperature, Metallurgical and Materials Transactions A, vol. 22, pp.1125-1130, (1991).

DOI: https://doi.org/10.1007/bf03325723

[78] D. A. Meyn, Effect of hydrogen on fracture and inert-environment sustained load cracking resistance of alpha-beta titanium-alloys, Metallurgical Transactions, vol. 5, pp.2405-2414, (1974).

DOI: https://doi.org/10.1007/bf02644024

[79] D. N. Williams, Effects of hydrogen in titanium-alloys on subcritical crack growth under sustained load, Materials Science and Engineering, vol. 24, pp.53-63, (1976).

DOI: https://doi.org/10.1016/0025-5416(76)90094-x

[80] H. Hoeg, B. Hollund, and I. Hall, Effect of hydrogen on the fracture properties and microstructure of Ti-6Al-4V, Metal Science, vol. 14, pp.50-56, (1980).

DOI: https://doi.org/10.1179/030634580790426274

[81] P. Marmy and M. Luppo, Effect of hydrogen on the fracture toughness of the titanium alloys Ti-6Al-4V and Ti-5Al-2. 5Sn before and after neutron irradiation, Plasma Devices and Operations, vol. 11, pp.71-79, (2003).

DOI: https://doi.org/10.1080/1051999031000098951

[82] J. W. Zhao, H. Ding, W. J. Zhao, X. F. Tian, H. L. Hou, and Y. Q. Wang, Influence of hydrogenation on microstructures and microhardness of Ti-6Al-4V alloy, Transactions of Nonferrous Metals Society of China, vol. 18, pp.506-511, (2008).

DOI: https://doi.org/10.1016/s1003-6326(08)60089-8

[83] M. Wasz, C. Ko, F. Brotzen, and R. McLellan, The effect of hydrogen on the fracture toughness of oxygen-strengthened titanium, Scripta metallurgica, vol. 24, pp.2043-2046, (1990).

DOI: https://doi.org/10.1016/0956-716x(90)90483-w

[84] D. L. Sun, Z. H. Li, X. Han, and Q. Wang, Influence of hydrogen on tensile property of Ti-6Al-4V, Key Engineering Materials, vol. 297, pp.1133-1138, (2005).

DOI: https://doi.org/10.4028/www.scientific.net/kem.297-300.1133

[85] J. Zhao, H. Ding, Y. Zhong, and C. S. Lee, Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti-6Al-4V alloy, International Journal of Hydrogen Energy, vol. 35, pp.6448-6454, (2010).

DOI: https://doi.org/10.1016/j.ijhydene.2010.03.109

[86] M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama, Fracture characteristics of Ti-6Al-4V and Ti-5Al-2. 5 Fe with refined microstructure using hydrogen, Metallurgical and Materials Transactions A, vol. 26, pp.1141-1151, (1995).

DOI: https://doi.org/10.1007/bf02670611

[87] J. Chesnutt, A. Thompson, and J. Williams, Influence of metallurgical factors on the fatigue crack growth rate in alpha-beta titanium alloys, DTIC Document1978.

DOI: https://doi.org/10.21236/ada063404

[88] E. Tal-Gutelmacher and D. Eliezer, Interaction of Hydrogen with Aerospace Titanium Alloys, Ben-Gurion University of the Negev, Beer-Sheva (Israel).

[89] F. H. Froes and D. Eylon, Developments in Titanium P/M, (2005).

[90] D. Bozic, V. Rajkovic, M. T. Jovanovic, and B. Dimcic, Influence of retained hydride particles and microstructure on mechanical properties of PM produced Ti-6Al-4V alloy, Powder Metallurgy, vol. 54, pp.40-45, Feb.

DOI: https://doi.org/10.1179/174329009x409606

[91] Key to Metals. (2012, 15 May). Heat Treating of Titanium and Titanium Alloys. Available: http: /www. keytometals. com/Article97. htm.

[92] B. Baufeld, O. Van der Biest, and R. Gault, Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition, International Journal of Materials Research, vol. 100, p.1536, (2009).

DOI: https://doi.org/10.3139/146.110217

[93] S. Shrivastava, Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim, California: Asm Intl, (2004).

[94] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys, Materials Science and Engineering: A, vol. 243, pp.32-45, (1998).

DOI: https://doi.org/10.1016/s0921-5093(97)00778-8

[95] S. Ankem, H. Margolin, C. A. Greene, B. W. Neuberger, and P. G. Oberson, Mechanical properties of alloys consisting of two ductile phases, Progress in Materials Science, vol. 51, pp.632-709, (2006).

DOI: https://doi.org/10.1016/j.pmatsci.2005.10.003

[96] U. Bathini, T. S. Srivatsan, A. Patnaik, and T. Quick, A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: influence of orientation and microstructure, Journal of Materials Engineering and Performance, vol. 19, pp.1172-1182.

DOI: https://doi.org/10.1007/s11665-010-9613-5

[97] B. Venkatesh, D. Chen, and S. Bhole, Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy, Materials Science and Engineering: A, vol. 506, pp.117-124, (2009).

DOI: https://doi.org/10.1016/j.msea.2008.11.018

[98] L. W. Meyer, L. Krüger, K. Sommer, T. Halle, and M. Hockauf, Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments, Mechanics of Time-Dependent Materials, vol. 12, pp.237-247, (2008).

DOI: https://doi.org/10.1007/s11043-008-9060-y

[99] R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys, Journal of Materials Processing Technology, vol. 133, pp.84-89, (2003).

DOI: https://doi.org/10.1016/s0924-0136(02)00248-0

[100] G. Luetjering, J. Albrecht, and A. Gysler, Mechanical properties of titanium alloys, " Titanium, 92: Science and technology, p.1, (1993).

[101] H. Conrad, R. I. Jaffee, H. P. Kessler, and W. W. Minkler, Eds., Applications Related Phenomena in Titanium Alloys. Philadelphia: ASTM International, 1968, p. ^pp. Pages.

DOI: https://doi.org/10.1520/stp432-eb

[102] Y. V. R. K. Prasad, T. Seshacharyulu, S. C. Medeiros, and W. G. Frazier, Influence of oxygen content on the forging response of equiaxed (α+β) preform of Ti–6Al–4V: commercial vs. ELI grade, Journal of Materials Processing Technology, vol. 108, pp.320-327, (2001).

DOI: https://doi.org/10.1016/s0924-0136(00)00832-3

[103] G. Lutjering and J. C. Williams, Alpha + Beta alloys, in Titanium, Second ed: Springer, 2007, pp.203-250.

[104] J. Peters and G. Lütjering, Comparison of the fatigue and fracture of α+ β and β titanium alloys, Metallurgical and Materials Transactions A, vol. 32, pp.2805-2818, (2001).

DOI: https://doi.org/10.1007/s11661-001-1031-8

[105] I. Hall and C. Hammond, Fracture toughness and crack propagation in titanium alloys, Materials Science and Engineering, vol. 32, pp.241-253, (1978).

DOI: https://doi.org/10.1016/0025-5416(78)90138-6

[106] N. Richards and J. Barnby, The relationship between fracture toughness and microstructure in alpha-beta titanium alloys, Materials Science and Engineering, vol. 26, pp.221-229, (1976).

DOI: https://doi.org/10.1016/0025-5416(76)90009-4

[107] M. Niinomi and T. Kobayashi, Toughness and strength of microstructurally controlled titanium alloys, ISIJ International, vol. 31, pp.848-855, (1991).

DOI: https://doi.org/10.2355/isijinternational.31.848

[108] S. Mashino, T. Horiya, H. G. Suzuki, and T. Kishi, Microfracture mechanism of Ti-6Al-4V alloy with acicular structure studied by AE source characterization, Journal of the Japan Institute of Metals, vol. 55, pp.756-764, Jul (1991).

DOI: https://doi.org/10.2320/jinstmet1952.55.7_756

[109] Y. Kawabe and S. Muneki, Strengthening and toughening of titanium alloys, ISIJ International, vol. 31, pp.785-791, (1991).

DOI: https://doi.org/10.2355/isijinternational.31.785

[110] Z. Fan and A. Miodownik, On the fracture toughness of α-ß titanium alloys, Journal of materials science letters, vol. 12, pp.1665-1668, (1993).

[111] D. J. McEldowney, S. Tamirisakandala, and D. B. Miracle, Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 41A, pp.1003-1015, Apr (2010).

DOI: https://doi.org/10.1007/s11661-009-0157-y

[112] I. Cvijovic, M. Vilotijevic, and T. J. Milan, The influence of microstructural characteristics on the mechanical properties of Ti-6Al-4V alloy produced by the powder metallurgy technique..

[113] L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez, E. Martinez, F. Medina, D. Hernandez, E. Martinez, and J. Martinez, Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V, Materials Characterization, vol. 60, pp.96-105, (2009).

DOI: https://doi.org/10.1016/j.matchar.2008.07.006

[114] T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima, Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process, Materials Science and Engineering: A, vol. 213, pp.148-153, (1996).

DOI: https://doi.org/10.1016/0921-5093(96)10232-x

[115] G. Yapici, I. Karaman, Z. Luo, and H. Rack, Microstructure and mechanical properties of severely deformed powder processed Ti–6Al–4V using equal channel angular extrusion, Scripta materialia, vol. 49, pp.1021-1027, (2003).

DOI: https://doi.org/10.1016/s1359-6462(03)00484-6

[116] M. N. Gungor, I. Ucok, L. S. Kramer, H. Dong, N. R. Martin, and W. T. Tack, Microstructure and mechanical properties of highly deformed Ti–6Al–4V, Materials Science and Engineering: A, vol. 410, pp.369-374, (2005).

DOI: https://doi.org/10.1016/j.msea.2005.08.141

[117] D. Bozic, D. Sekulic, J. Stasic, V. Rajkovic, and M. T. Jovanovic, The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy, International Journal of Materials Research, vol. 99, pp.1268-1274, Nov (2008).

DOI: https://doi.org/10.3139/146.101762

[118] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Materialia, vol. 58, pp.3303-3312, (2010).

DOI: https://doi.org/10.1016/j.actamat.2010.02.004

[119] S. Hamai and Y. Sugiura, Effect of beta-region heat-treatment conditions on mechanical-properties of Ti-6Al-4V, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 78, pp.319-326, Feb (1992).

DOI: https://doi.org/10.2355/tetsutohagane1955.78.2_319

[120] Y. T. Lee, M. Peters, and G. Wirth, Effects of thermomechanical treatment on microstructure and mechanical properties of blended elemental Ti-6Al-4V compacts, Materials Science and Engineering: A, vol. 102, pp.105-114, (1988).

DOI: https://doi.org/10.1016/0025-5416(88)90538-1

[121] P. J. Andersen, V. M. Svoyatytsky, F. H. Froes, Y. Mahajan, and D. Eylon, Fracture behavior of blended elemental P/M titanium alloy, in Modern Developments in Powder Metallurgy; Proceedings of the 1980 International Powder Metallurgy Conference. vol. 13, H. H. Hausner, H. W. Antes, and G. D. Smith, Eds., ed Washington, D. C: Metal Powder Industries Federation 1981, pp.537-549.

DOI: https://doi.org/10.1520/stp28934s

[122] M. Dlapka, H. Danninger, C. Gierl, and B. Lindqvist, Defining the pores in PM components, Metal Powder Report, vol. 65, pp.30-33, (2010).

DOI: https://doi.org/10.1016/s0026-0657(10)70093-x

[123] N. Moody, W. Garrison, J. Smugeresky, and J. Costa, The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metallurgical and Materials Transactions A, vol. 24, pp.161-174, (1993).

DOI: https://doi.org/10.1007/bf02669613