Fracture Toughness of Powder Metallurgy and Ingot Titanium Alloys – A Review

Article Preview

Abstract:

Powder metallurgy (PM) is potentially capable of producing homogeneous titanium alloys at relative low cost compared to ingot metallurgy (IM). There are many established PM methods for consolidating metal powders to near net shapes with a high degree of freedom in alloy composition and resulting microstructural characteristics. The mechanical properties of titanium and its alloys processed using a powder metallurgical route have been studied in great detail; one major concern is that ductility and toughness of materials produced by a PM route are often lower than those of corresponding IM materials. The aim of this paper is to review the fracture toughness of both PM and IM titanium alloys. The effects of critical factors such as interstitial impurities, microstructural features and heat treatment on fracture toughness are also discussed

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-160

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] International Titanium Association, "Titanium: The Ultimate Choice," Author, Boulder, Colorado1999.

Google Scholar

[2] C. M. Ward-Close, A. B. Godfrey, and S. R. Thompson, "Titanium made the EDO way should see prices drop," Metal Powder Report, vol. 60, pp.20-25, 2005.

DOI: 10.1016/s0026-0657(05)70451-3

Google Scholar

[3] C. Elias, J. H. C. Lima, R. Valiev, and M. Meyers, "Biomedical applications of titanium and its alloys," JOM Journal of the Minerals, Metals and Materials Society, vol. 60, pp.46-49, 2008.

DOI: 10.1007/s11837-008-0031-1

Google Scholar

[4] F. Froes and S. Haake, Materials and Science in Sports: Materials and Science in Sports Symposium, Coronado, California, April 22-25, 2001. Switzerland: TMS, 2001.

Google Scholar

[5] M. A. Imam, F. H. Froes, and K. L. Housley, "Titanium and titanium Alloys," in Kirk-Othmer Encyclopedia of Chemical Technology, ed: John Wiley & Sons, Inc., 2000.

DOI: 10.1002/0471238961.2009200119050107.a01.pub3

Google Scholar

[6] M. J. Donachie, Titanium: A Technical Guide, 2 ed.: ASM International, 2000.

Google Scholar

[7] ASM International. (2012, 15 May). Titanium and Titanium Alloys. Available: http://www.asminternational.org/portal/site/www/SubjectGuideItem/?vgnextoid=bb53b4d68558d210VgnVCM100000621e010aRCRD#overview

Google Scholar

[8] G. Roza, Titanium: Understanding the Elements of the Periodic Table. New York: Rosen Central, 2008.

Google Scholar

[9] V. N. Moiseyev, "Applications of titanium and titanium alloys," in Titanium Alloys: Russian Aircraft and Aerospace Applications. vol. 5, ed: Taylor & Francis Group, 2006, pp.195-205.

DOI: 10.1201/9781420037678

Google Scholar

[10] F. H. Froes, "Titanium alloys," in Handbook of Advanced Materials: Enabling New Designs, J. K. Wessel, Ed., ed Hoboken, New Jersey: Wiley-Interscience, 2004, pp.271-320.

DOI: 10.1002/0471465186.ch8

Google Scholar

[11] "Structure and properties of titanium and titanium alloys," in Titanium and Titanium Alloys: Fundamentals and Applications, C. Leyens and M. Peters, Eds., ed: Wiley, 2003, pp.1-35.

DOI: 10.1002/3527602119.ch1

Google Scholar

[12] G. Lutjering and J. C. Williams, "Fundamental aspects," in Titanium, Second ed: Springer, 2007, pp.15-50.

Google Scholar

[13] M. J. Donachie, "Understnding Ti's metallurgy," in Titanium: A Technical Guide, 2 ed: ASM International, 2000, pp.21-36.

Google Scholar

[14] R. Wanhill and S. Barter, "Metallurgy and microstructure," in Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys, ed: SpringerBriefs in Applied Sciences and Technology, 2012, pp.5-9.

DOI: 10.1007/978-94-007-2524-9_2

Google Scholar

[15] J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O. S. Es-Said, "Tensile properties and microstructures of laser-formed Ti-6Al-4V," Journal of Materials Engineering and Performance, vol. 20, pp.203-212, Mar 2011.

DOI: 10.1007/s11665-010-9670-9

Google Scholar

[16] H. Salimijazi, T. Coyle, and J. Mostaghimi, "Vacuum plasma spraying: a new concept for manufacturing Ti-6Al-4V structures," JOM Journal of the Minerals, Metals and Materials Society, vol. 58, pp.50-56, 2006.

DOI: 10.1007/s11837-006-0083-z

Google Scholar

[17] E. Collings, Materials Properties Handbook: Titanium Alloys: Asm Intl, 1994.

Google Scholar

[18] G. Lutjering and J. C. Williams, "Technological aspects," in Titanium, Second ed: Springer, 2007, pp.59-64.

Google Scholar

[19] M. J. Donachie, "Ingot metallurgy and mill products," in Titanium: A Technical Guide, 2 ed: ASM International, 2000, pp.25-30.

DOI: 10.31399/asm.tb.ttg2.t61120025

Google Scholar

[20] F. Yang, D. L. Zhang, H. Y. Lu, and B. Gabbitas, "Preparation, microstructure and properties of Ti-6Al-4V rods by powder compact extrusion of powder mixture," in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.70-75.

DOI: 10.4028/www.scientific.net/kem.520.70

Google Scholar

[21] D. Tricker, M. Jackson, and R. Dashwood, "Direct extrusion of titanium alloy powder," Materials Technology, vol. 24, pp.174-179, Sep 2009.

DOI: 10.1179/106678509x12475882915411

Google Scholar

[22] R. Lapovok and D. Tomus, "Production of dense compact billet from Ti-alloy powder using equal channel angular extrusion," ARC Centre of Excellence for Design in Light Metals, Dept. of Materials Engineering, Monash University, Clayton, Melbourne, 4/ 06/ 2007.

Google Scholar

[23] H. Wang, Z. Zak Fang, and P. Sun, "A critical review of mechanical properties of powder metallurgy titanium," International Journal of Powder Metallurgy, vol. 46, pp.45-57, 2010.

Google Scholar

[24] D. Eylon, F. H. S. Froes, and S. Abkowitz, "Titanium powder metallurgy alloys and composites," in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed American Society for Metals, 1998, pp.2192-2231.

Google Scholar

[25] F. Froes and D. Eylon, "Powder metallurgy of titanium alloys," International Materials Reviews, vol. 35, pp.162-184, 1990.

DOI: 10.1179/095066090790323984

Google Scholar

[26] S. Abkowitz, S. Abkowitz, and H. Fisher, "Breakthrough claimed for titanium PM," Metal Powder Report, vol. 66, pp.16-21, 2011.

DOI: 10.1016/s0026-0657(12)70015-2

Google Scholar

[27] J. H. Moll and C. F. Yolton, "Production of titanium powder," in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed: American Society for Metals, 1998, pp.382-399.

Google Scholar

[28] R. M. German, "Status of metal powder injection molding of titanium," International Journal of Powder Metallurgy, vol. 46, pp.11-17, 2010.

Google Scholar

[29] M. Qian, "Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication," International Journal of Powder Metallurgy, vol. 46, pp.29-44, Sep-Oct 2010.

Google Scholar

[30] J. J. Conway and F. J. Rizzo, "Hot isostatic pressing of metal powders," in Powder Metal Technologies and Applications. vol. 7, ASM Metals Handbook ed American Society for Metals, 1998, pp.1425-1462.

Google Scholar

[31] D. L. Zhang, S. Raynova, V. Nadakuduru, P. Cao, B. Gabbitas, and B. Robinson, "Consolidation of titanium, and Ti-6Al-4V alloy powders by powder compact forging," in Light Metals Technology 2009. vol. 618-619, M. S. Dargusch and S. M. Keay, Eds., ed Stafa-Zurich: Trans Tech Publications Ltd, 2009, pp.513-516.

DOI: 10.4028/www.scientific.net/msf.618-619.513

Google Scholar

[32] V. N. Nadakuduru, D. L. Zhang, S. Raynova, P. Cao, and B. Gabbitas, "Mechanical behaviour of titanium, Ti-6Al-4V (wt%) alloy and Ti-47Al-2Cr (at%) alloy produced using powder compact forging," Advanced Materials Research, vol. 275, pp.186-191, 2011.

DOI: 10.4028/www.scientific.net/amr.275.186

Google Scholar

[33] S. Raynova, D. L. Zhang, and B. Gabbitas, "Tensile properties of Ti-6Al-4V discs produced by open die powder compact forging of pre-alloyed HDH powders," in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.289-294.

DOI: 10.4028/www.scientific.net/kem.520.289

Google Scholar

[34] S. Raynova, D. L. Zhang, D. Polo, L. Gonthier, W. Egea, and V. N. Nadakuduru, "Tensile properties and fracture behaviour of induction sintered Ti and Ti-6Al-4V (wt%) powder compacts," Advanced Materials Research, vol. 275, pp.196-199, 2011.

DOI: 10.4028/www.scientific.net/amr.275.196

Google Scholar

[35] M. T. Jia, D. L. Zhang, and B. Gabbitas, "Comparison of blended elemental (BE) and mechanical alloyed (MA) powder compact forging into Ti-6Al-4V rocker arms," in Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium. vol. 520, M. Qian, Ed., ed, 2012, pp.82-88.

DOI: 10.4028/www.scientific.net/kem.520.82

Google Scholar

[36] G. Lutjering and J. C. Williams, Titanium, Second ed.: Springer, 2007.

Google Scholar

[37] H. Margolin, "Titanium alloys fatigue and fracture," in Fatigue Data Book: Light Structural Alloys, K. S. Dragolich and N. D. DiMatteo, Eds., ed Materials Park, OH: ASM International, 1995, pp.183-203.

Google Scholar

[38] S. Lampman, "Wrought titanium and titanium alloys," in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. vol. 2, 10 ed American Society for Metals, 1992, pp.1782-1886.

DOI: 10.31399/asm.hb.v02.a0001081

Google Scholar

[39] M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, vol. 243, pp.231-236, Mar 1998.

DOI: 10.1016/s0921-5093(97)00806-x

Google Scholar

[40] K. V. Sudhakar, "A comparative study on P/M and wrought titanium alloys," P/M Science & Technology Briefs, vol. 4, pp.22-24, 2002.

Google Scholar

[41] H. Starrett and N. R. Ontko, "Mechanical properties of elementally blended Ti-6Al-4V," DTIC Document1986.

DOI: 10.21236/ada176640

Google Scholar

[42] S. M. El-Soudani, K. O. Yu, E. M. Crist, F. Sun, M. B. Campbell, T. S. Esposito, J. J. Phillips, V. Moxson, and V. A. Duz, "Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications," Metallurgical and Materials Transactions A, pp.1-12, 2012.

DOI: 10.1007/s11661-012-1437-5

Google Scholar

[43] "Standard test method for linear elastic plane strain fracture toughness KIc of metallic materials," in ASTM E399 - 09, ed. Pennsylvania, US: ASTM (American Society for Testing and Materials), 2009.

DOI: 10.1520/e0399-05

Google Scholar

[44] L. Wang, Z. B. Lang, and H. P. Shi, "Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy," Transactions of Nonferrous Metals Society of China, vol. 17, pp. s639-s643.

Google Scholar

[45] B. Van Hooreweder, D. Moens, R. Boonen, J. P. Kruth, and P. Sas, "Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting," Advanced Engineering Materials, vol. 14, pp.92-97, Feb 2012.

DOI: 10.1002/adem.201100233

Google Scholar

[46] J. P. Herteman, D. Eylon, and F. H. Froes, "Mechanical-properties of advanced titanium powder-metallurgy compacts," Powder Metallurgy International, vol. 17, pp.116-119, 1985.

Google Scholar

[47] M. M. Dewidar, H. C. Yoon, and J. K. Lim, "Mechanical properties of metals for biomedical applications using powder metallurgy process: a review," Metals and Materials International, vol. 12, pp.193-206, Jun 2006.

DOI: 10.1007/bf03027531

Google Scholar

[48] J. Chesnutt, C. Rhodes, and J. Williams, "Relationship between mechanical properties, microstructure, and fracture topography in α+β titanium alloys," Fractography–microscopic cracking processes. ASTM STP, vol. 600, pp.99-138, 1976.

DOI: 10.1520/stp29194s

Google Scholar

[49] K. Nagai, T. Yuri, T. Ogata, O. Umezawa, K. Ishikawa, T. Nishimura, T. Mizoguchi, and Y. Ito, "Cryogenic mechanical properties of Ti–6Al–4V alloys with three levels of oxygen content," ISIJ International, vol. 31, pp.882-889, 1991.

DOI: 10.2355/isijinternational.31.882

Google Scholar

[50] V. A. R. Henriques, S. L. G. Petroni, M. S. M. Paula, C. A. A. Cairo, and E. T. Galvani, "Interstitial control in titanium alloys produced by powder metallurgy," in Advanced Powder Technology Vii. vol. 660-661, L. Salgado and F. Ambrozio, Eds., ed, 2010, pp.3-10.

DOI: 10.4028/www.scientific.net/msf.660-661.3

Google Scholar

[51] V. N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications vol. 5: Taylor & Francis Group, 2006.

Google Scholar

[52] L. P. Lefebvre and E. Baril, "Effect of oxygen concentration and distribution on the compression properties on titanium foams," Advanced Engineering Materials, vol. 10, pp.868-876, Sep 2008.

DOI: 10.1002/adem.200800122

Google Scholar

[53] H. Conrad, "Effect of interstitial solutes on the strength and ductility of titanium," Progress in Materials Science, vol. 26, pp.123-403, 1981.

DOI: 10.1016/0079-6425(81)90001-3

Google Scholar

[54] M. Guclu, I. Ucok, and J. R. Pickens, Effect of oxygen content on properties of cast alloy Ti-6Al-4V. Warrendale: Minerals, Metals & Materials Society, 2004.

Google Scholar

[55] M. L. Wasz, F. R. Brotzen, R. B. McLellan, and A. J. Griffin Jr, "Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium," International Materials Reviews, vol. 41, pp.1-12, 1996.

DOI: 10.1179/imr.1996.41.1.1

Google Scholar

[56] J. M. Oh, B. G. Lee, S. W. Cho, S. W. Lee, G. S. Choi, and J. W. Lim, "Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V," Metals and Materials International, vol. 17, pp.733-736, Oct 2011.

DOI: 10.1007/s12540-011-1006-2

Google Scholar

[57] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, "Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29Nb-13Ta-4.6Zr alloy under solutionized and aged conditions," Materials transactions, vol. 50, p.2716, 2009.

DOI: 10.2320/matertrans.ma200904

Google Scholar

[58] Z. Liu and G. Welsch, "Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys," Metallurgical and Materials Transactions A, vol. 19, pp.527-542, 1988.

DOI: 10.1007/bf02649267

Google Scholar

[59] D. Simbi and J. Scully, "The effect of residual interstitial elements and iron on mechanical properties of commercially pure titanium," Materials Letters, vol. 26, pp.35-39, 1996.

DOI: 10.1016/0167-577x(95)00204-9

Google Scholar

[60] J. Gu and D. Hardie, "Effect of hydrogen on the tensile ductility of Ti-6Al-4V, Part 2. Fracture of pre-cracked tensile specimens," Journal of Materials Science, vol. 32, pp.609-617, Feb 1997.

Google Scholar

[61] E. Nyberg, M. Miller, K. Simmons, and K. S. Weil, "Manufacturers 'need better quality titanium PM powders'," Metal Powder Report, vol. 60, pp.8-13, 2005.

DOI: 10.1016/s0026-0657(05)70496-3

Google Scholar

[62] T. Horiya and T. Kishi, "Fracture toughness of titanium alloys," Nippon Steel Tech. Rep.(Japan), vol. 62, pp.85-91, 1994.

Google Scholar

[63] H. R. Ogden and R. I. Jaffee, "The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys," TML-20 United States10.2172/4370612Tue Feb 05 18:36:09 EST 2008DTIE; NSA-10-001388English, 1955.

DOI: 10.2172/4370612

Google Scholar

[64] P. Pao, M. A. Imam, H. Jones, R. Bayles, J. Feng, and Tms, Effect of oxygen on fracture toughness and stress-corrosion cracking of Ti-6211. Warrendale: Minerals, Metals & Materials Soc, 2008.

Google Scholar

[65] S. Seong, O. Younossi, and B. W. Goldsmit, "Market prospects and emerging technologies," in Titanium: Industrial Base, Price Trends, and Technology Initiatives, ed: RAND Corporation, 2009, p.87.

Google Scholar

[66] J. Hall, "Hydride Precipitation in Ti-6 Al-4 V," Scandinavian Journal of Metallurgy, vol. 7, pp.277-281, 1978.

Google Scholar

[67] L. P. Lefebvre, É. Baril, and M. Bureau, "Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams," Journal of Materials Science: Materials in Medicine, vol. 20, pp.2223-2233, 2009.

DOI: 10.1007/s10856-009-3798-x

Google Scholar

[68] I. I. Kornilov, "Effect of oxygen on titanium and its alloys," Metal Science and Heat Treatment, vol. 15, pp.826-829, 1973.

DOI: 10.1007/bf00656056

Google Scholar

[69] K. S. Chan, "Relationships of fracture toughness and dislocation mobility in intermetallics," Metallurgical and Materials Transactions A, vol. 34, pp.2315-2328, 2003.

DOI: 10.1007/s11661-003-0295-6

Google Scholar

[70] R. Ferguson and R. Berryman, "Fracture mechanics evaluation of B-1 materials. Volume I. Text," ed: Rockwell international Los Angeles CA B-1 DIV, 1976.

Google Scholar

[71] D. Cooper, "Correlation study of fracture toughness of airframe forgings," TIMET Internal Report, Toronto Quality Control Dept1974.

Google Scholar

[72] T. Horiya, H. Suzuki, and T. Kishi, "Effect of microstructure and impurity elements on fracture toughness of Ti-6Al-4V alloy," Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.), vol. 75, pp.151-158, 1989.

DOI: 10.2355/tetsutohagane1955.75.12_2250

Google Scholar

[73] "Standard Specification for Powder Metallurgy (P/M) Titanium Alloy Structural Components," in ASTM B817 - 08, ed, 2008.

Google Scholar

[74] E. Baril, L. P. Lefebvre, and Y. Thomas, "Interstitial elements in titanium powder metallurgy: sources and control," Powder Metallurgy, vol. 54, pp.183-187, Jul 2011.

DOI: 10.1179/174329011x13045076771759

Google Scholar

[75] Y. Lee, M. Peters, K. Grundhoff, and H. Schurmann, "Effect of degassing treatment on microstructure and mechanical properties of P/M Ti-6Al-4V," ed, 1990.

Google Scholar

[76] E. Tal-Gutelmacher and D. Eliezer, "The hydrogen embrittlement of titanium-based alloys," JOM Journal of the Minerals, Metals and Materials Society, vol. 57, pp.46-49, 2005.

DOI: 10.1007/s11837-005-0115-0

Google Scholar

[77] G. Gao and S. Dexter, "Effect of hydrogen on creep behavior of Ti-6AI-4V alloy at room temperature," Metallurgical and Materials Transactions A, vol. 22, pp.1125-1130, 1991.

DOI: 10.1007/bf02668562

Google Scholar

[78] D. A. Meyn, "Effect of hydrogen on fracture and inert-environment sustained load cracking resistance of alpha-beta titanium-alloys," Metallurgical Transactions, vol. 5, pp.2405-2414, 1974.

DOI: 10.1007/bf02644024

Google Scholar

[79] D. N. Williams, "Effects of hydrogen in titanium-alloys on subcritical crack growth under sustained load," Materials Science and Engineering, vol. 24, pp.53-63, 1976.

DOI: 10.1016/0025-5416(76)90094-x

Google Scholar

[80] H. Hoeg, B. Hollund, and I. Hall, "Effect of hydrogen on the fracture properties and microstructure of Ti-6Al-4V," Metal Science, vol. 14, pp.50-56, 1980.

DOI: 10.1179/030634580790426274

Google Scholar

[81] P. Marmy and M. Luppo, "Effect of hydrogen on the fracture toughness of the titanium alloys Ti-6Al-4V and Ti-5Al-2. 5Sn before and after neutron irradiation," Plasma Devices and Operations, vol. 11, pp.71-79, 2003.

DOI: 10.1080/1051999031000098951

Google Scholar

[82] J. W. Zhao, H. Ding, W. J. Zhao, X. F. Tian, H. L. Hou, and Y. Q. Wang, "Influence of hydrogenation on microstructures and microhardness of Ti-6Al-4V alloy," Transactions of Nonferrous Metals Society of China, vol. 18, pp.506-511, 2008.

DOI: 10.1016/s1003-6326(08)60089-8

Google Scholar

[83] M. Wasz, C. Ko, F. Brotzen, and R. McLellan, "The effect of hydrogen on the fracture toughness of oxygen-strengthened titanium," Scripta metallurgica, vol. 24, pp.2043-2046, 1990.

DOI: 10.1016/0956-716x(90)90483-w

Google Scholar

[84] D. L. Sun, Z. H. Li, X. Han, and Q. Wang, "Influence of hydrogen on tensile property of Ti-6Al-4V," Key Engineering Materials, vol. 297, pp.1133-1138, 2005.

DOI: 10.4028/www.scientific.net/kem.297-300.1133

Google Scholar

[85] J. Zhao, H. Ding, Y. Zhong, and C. S. Lee, "Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti-6Al-4V alloy," International Journal of Hydrogen Energy, vol. 35, pp.6448-6454, 2010.

DOI: 10.1016/j.ijhydene.2010.03.109

Google Scholar

[86] M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama, "Fracture characteristics of Ti-6Al-4V and Ti-5Al-2.5 Fe with refined microstructure using hydrogen," Metallurgical and Materials Transactions A, vol. 26, pp.1141-1151, 1995.

DOI: 10.1007/bf02670611

Google Scholar

[87] J. Chesnutt, A. Thompson, and J. Williams, "Influence of metallurgical factors on the fatigue crack growth rate in alpha-beta titanium alloys," DTIC Document1978.

DOI: 10.21236/ada063404

Google Scholar

[88] E. Tal-Gutelmacher and D. Eliezer, "Interaction of Hydrogen with Aerospace Titanium Alloys," Ben-Gurion University of the Negev, Beer-Sheva (Israel).

DOI: 10.26911/thejmch.2020.05.03.11

Google Scholar

[89] F. H. Froes and D. Eylon, "Developments in Titanium P/M," 2005.

Google Scholar

[90] D. Bozic, V. Rajkovic, M. T. Jovanovic, and B. Dimcic, "Influence of retained hydride particles and microstructure on mechanical properties of PM produced Ti-6Al-4V alloy," Powder Metallurgy, vol. 54, pp.40-45, Feb.

DOI: 10.1179/174329009x409606

Google Scholar

[91] Key to Metals. (2012, 15 May). Heat Treating of Titanium and Titanium Alloys. Available: http://www.keytometals.com/Article97.htm#

Google Scholar

[92] B. Baufeld, O. Van der Biest, and R. Gault, "Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition," International Journal of Materials Research, vol. 100, p.1536, 2009.

DOI: 10.3139/146.110217

Google Scholar

[93] S. Shrivastava, Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim, California: Asm Intl, 2004.

Google Scholar

[94] G. Lütjering, "Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys," Materials Science and Engineering: A, vol. 243, pp.32-45, 1998.

DOI: 10.1016/s0921-5093(97)00778-8

Google Scholar

[95] S. Ankem, H. Margolin, C. A. Greene, B. W. Neuberger, and P. G. Oberson, "Mechanical properties of alloys consisting of two ductile phases," Progress in Materials Science, vol. 51, pp.632-709, 2006.

DOI: 10.1016/j.pmatsci.2005.10.003

Google Scholar

[96] U. Bathini, T. S. Srivatsan, A. Patnaik, and T. Quick, "A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: influence of orientation and microstructure," Journal of Materials Engineering and Performance, vol. 19, pp.1172-1182, Nov.

DOI: 10.1007/s11665-010-9613-5

Google Scholar

[97] B. Venkatesh, D. Chen, and S. Bhole, "Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy," Materials Science and Engineering: A, vol. 506, pp.117-124, 2009.

DOI: 10.1016/j.msea.2008.11.018

Google Scholar

[98] L. W. Meyer, L. Krüger, K. Sommer, T. Halle, and M. Hockauf, "Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments," Mechanics of Time-Dependent Materials, vol. 12, pp.237-247, 2008.

DOI: 10.1007/s11043-008-9060-y

Google Scholar

[99] R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, "The effect of microstructure on the mechanical properties of two-phase titanium alloys," Journal of Materials Processing Technology, vol. 133, pp.84-89, 2003.

DOI: 10.1016/s0924-0136(02)00248-0

Google Scholar

[100] G. Luetjering, J. Albrecht, and A. Gysler, "Mechanical properties of titanium alloys," Titanium'92: Science and technology, p.1, 1993.

Google Scholar

[101] H. Conrad, R. I. Jaffee, H. P. Kessler, and W. W. Minkler, Eds., Applications Related Phenomena in Titanium Alloys. Philadelphia: ASTM International, 1968, p.^pp. Pages.

DOI: 10.1520/stp432-eb

Google Scholar

[102] Y. V. R. K. Prasad, T. Seshacharyulu, S. C. Medeiros, and W. G. Frazier, "Influence of oxygen content on the forging response of equiaxed (α+β) preform of Ti–6Al–4V: commercial vs. ELI grade," Journal of Materials Processing Technology, vol. 108, pp.320-327, 2001.

DOI: 10.1016/s0924-0136(00)00832-3

Google Scholar

[103] G. Lutjering and J. C. Williams, "Alpha + Beta alloys," in Titanium, Second ed: Springer, 2007, pp.203-250.

Google Scholar

[104] J. Peters and G. Lütjering, "Comparison of the fatigue and fracture of α+ β and β titanium alloys," Metallurgical and Materials Transactions A, vol. 32, pp.2805-2818, 2001.

DOI: 10.1007/s11661-001-1031-8

Google Scholar

[105] I. Hall and C. Hammond, "Fracture toughness and crack propagation in titanium alloys," Materials Science and Engineering, vol. 32, pp.241-253, 1978.

DOI: 10.1016/0025-5416(78)90138-6

Google Scholar

[106] N. Richards and J. Barnby, "The relationship between fracture toughness and microstructure in alpha-beta titanium alloys," Materials Science and Engineering, vol. 26, pp.221-229, 1976.

DOI: 10.1016/0025-5416(76)90009-4

Google Scholar

[107] M. Niinomi and T. Kobayashi, "Toughness and strength of microstructurally controlled titanium alloys," ISIJ International, vol. 31, pp.848-855, 1991.

DOI: 10.2355/isijinternational.31.848

Google Scholar

[108] S. Mashino, T. Horiya, H. G. Suzuki, and T. Kishi, "Microfracture mechanism of Ti-6Al-4V alloy with acicular structure studied by AE source characterization," Journal of the Japan Institute of Metals, vol. 55, pp.756-764, Jul 1991.

DOI: 10.2320/jinstmet1952.55.7_756

Google Scholar

[109] Y. Kawabe and S. Muneki, "Strengthening and toughening of titanium alloys," ISIJ International, vol. 31, pp.785-791, 1991.

DOI: 10.2355/isijinternational.31.785

Google Scholar

[110] Z. Fan and A. Miodownik, "On the fracture toughness of α-ß titanium alloys," Journal of materials science letters, vol. 12, pp.1665-1668, 1993.

DOI: 10.1007/bf00418824

Google Scholar

[111] D. J. McEldowney, S. Tamirisakandala, and D. B. Miracle, "Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 41A, pp.1003-1015, Apr 2010.

DOI: 10.1007/s11661-009-0157-y

Google Scholar

[112] I. Cvijovic, M. Vilotijevic, and T. J. Milan, "The influence of microstructural characteristics on the mechanical properties of Ti-6Al-4V alloy produced by the powder metallurgy technique."

Google Scholar

[113] L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez, E. Martinez, F. Medina, D. Hernandez, E. Martinez, and J. Martinez, "Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V," Materials Characterization, vol. 60, pp.96-105, 2009.

DOI: 10.1016/j.matchar.2008.07.006

Google Scholar

[114] T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima, "Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process," Materials Science and Engineering: A, vol. 213, pp.148-153, 1996.

DOI: 10.1016/0921-5093(96)10232-x

Google Scholar

[115] G. Yapici, I. Karaman, Z. Luo, and H. Rack, "Microstructure and mechanical properties of severely deformed powder processed Ti–6Al–4V using equal channel angular extrusion," Scripta materialia, vol. 49, pp.1021-1027, 2003.

DOI: 10.1016/s1359-6462(03)00484-6

Google Scholar

[116] M. N. Gungor, I. Ucok, L. S. Kramer, H. Dong, N. R. Martin, and W. T. Tack, "Microstructure and mechanical properties of highly deformed Ti–6Al–4V," Materials Science and Engineering: A, vol. 410, pp.369-374, 2005.

DOI: 10.1016/j.msea.2005.08.141

Google Scholar

[117] D. Bozic, D. Sekulic, J. Stasic, V. Rajkovic, and M. T. Jovanovic, "The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy," International Journal of Materials Research, vol. 99, pp.1268-1274, Nov 2008.

DOI: 10.3139/146.101762

Google Scholar

[118] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, "A study of the microstructural evolution during selective laser melting of Ti-6Al-4V," Acta Materialia, vol. 58, pp.3303-3312, 2010.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[119] S. Hamai and Y. Sugiura, "Effect of beta-region heat-treatment conditions on mechanical-properties of Ti-6Al-4V," Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, vol. 78, pp.319-326, Feb 1992.

DOI: 10.2355/tetsutohagane1955.78.2_319

Google Scholar

[120] Y. T. Lee, M. Peters, and G. Wirth, "Effects of thermomechanical treatment on microstructure and mechanical properties of blended elemental Ti-6Al-4V compacts," Materials Science and Engineering: A, vol. 102, pp.105-114, 1988.

DOI: 10.1016/0025-5416(88)90538-1

Google Scholar

[121] P. J. Andersen, V. M. Svoyatytsky, F. H. Froes, Y. Mahajan, and D. Eylon, "Fracture behavior of blended elemental P/M titanium alloy," in Modern Developments in Powder Metallurgy; Proceedings of the 1980 International Powder Metallurgy Conference. vol. 13, H. H. Hausner, H. W. Antes, and G. D. Smith, Eds., ed Washington, D.C: Metal Powder Industries Federation 1981, pp.537-549.

DOI: 10.1007/978-1-4615-8963-1

Google Scholar

[122] M. Dlapka, H. Danninger, C. Gierl, and B. Lindqvist, "Defining the pores in PM components," Metal Powder Report, vol. 65, pp.30-33, 2010.

DOI: 10.1016/s0026-0657(10)70093-x

Google Scholar

[123] N. Moody, W. Garrison, J. Smugeresky, and J. Costa, "The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys," Metallurgical and Materials Transactions A, vol. 24, pp.161-174, 1993.

DOI: 10.1007/bf02669613

Google Scholar