Research and Development of Low-Cost Titanium Alloys for Biomedical Applications

Abstract:

Article Preview

β-type titanium alloys comprising low cost elements such as Fe, Mn, Cr, Sn, Al, O and N and having low Young’s modulus are currently being developed. Examples of such alloys include Ti-10Cr-Al, Ti-Mn, Ti-Mn-Fe, Ti-Mn-Al, Ti-Cr-Al, Ti-Sn-Cr, Ti-Cr-Sn-Zr, Ti-(Cr, Mn)-Sn, and Ti-12Cr. Ti-5Fe-3Nb-3Zr belongs to that class of titanium alloys in which rare metals such as Nb, Ta, and Zr have been reduced using Fe. Ti-5Fe-3Nb-3Zr has a Young’s modulus of around 76 GPa and has greater strength than that of Ti-6Al-4V ELI for biomedical applications. The characteristics of Ti-5Fe-3Nb-3Zr and other low-cost beta-type titanium alloys with low Young’s moduli are discussed from the viewpoint of biomedical applications.

Info:

Periodical:

Edited by:

M. Ashraf Imam, F. H. (Sam) Froes and Ramana G. Reddy

Pages:

133-139

Citation:

M. Niinomi et al., "Research and Development of Low-Cost Titanium Alloys for Biomedical Applications", Key Engineering Materials, Vol. 551, pp. 133-139, 2013

Online since:

May 2013

Export:

Price:

$38.00

[1] B. Boyce, J. Byars, S. McWilliams, M. Mocan, H. Elder, I. Boyle, B. Junor: Br. Med. J. Vol. 45 (1992), p.50.

[2] M. Niinomi: Acta. Biomaterialia, to be published.

[3] M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa Materials Transactions, Vol. 43 (2002), p.2970.

DOI: https://doi.org/10.2320/matertrans.43.2970

[4] T. Ahmed T, M. Long, J. Silvestri, C. Ruiz, H. J. Rack: eds. P. A. Blenkinsop, W. J. Evans, and H. M. Flower HM, Titanium '95, Institute of Metals, London, UK, Vol. II, (1996), p.1760.

[5] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Materi. Sci. Eng. A, Vol. A243 (1998), p.244.

[6] L. D. Zardiackas, D. W. Mitchell, J. A. Disegi J: eds. S. A. Brown and J. E. Lemons, Medical applications of titanium and its alloy ASTM STP 1272, ASTM, West Conshohocken, PA, USA, (1996), p.60.

[7] K. Ushida, K. Tsuge, T. Akahori, T. Hattori, M. Niinomi, K. Ishikura, and M. A. Gepreel: J. Jpn. Inst. Metals, Vol. 76 (2012), p.397.

[8] D. Kuroda, H. Kawasaki, A. Yamamoto, S. Hiromoto, and T. Hanawa: Mater. Trans. Vol. 46. (2005), p.1532.

[9] M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, and M. Niinomi: Mater. Sci. Forum Vol. 638-642 (2010), p.425.

[10] M. Ikeda, M. Ueda, R. Matsunaga, and M. Niinomi: Mater. Sci. Forum Vol. 654-656 (2010), p.855.

[11] M. Ikeda, M. Ueda, T. Kinoshita, M. Ogawa, and M. Niinomi: Mater. Sci. Forum Vol. 706-709 (2012), p.1893.

[12] M. Abdel-Hady, M. Niinomi, T. Akahori, M. nakai, and H. Tsutsumi: Collected Abstract of 118th Annual Meeting of Jpn. Inst. Light Metals, (2010), p.69.

[13] Y. Kobayashi, Y. Shibata, T. Kikuchi, T. Yamazaki, H. Tezuka, and T. Sato: Collected Abstract of the 118th Annual Meeting of Jpn. Inst. Light Metals, (2010), p.71.

[14] Y. Murayama: Bull. Niigata Inst Tech. Vol. 11 (2006), p.11.

[15] Y. Murayama and S. Sasaki: Bull. Niigata Inst Tech. Vol. 14 82009), p.1.

[16] Y. Murayama, S. Sasaki, H. Kimura, and A. Chiba: Mater. Sci. Forum Vol. 654-656 (2010), p.2114.

[17] Y. Kusano, T. Inamura, H. Kanetaka, S. Miyazaki, and H. Hosoda: Mater. Sci. Forum Vol. 654-656 (20101), p.2118.

[18] M. Nakai, M. Niinomi, X. F. Zhao, X. Zhao, K. Narita: Mater. Letters Vol. 65 (2011), pp. p.688.

[19] X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda: Acta Biomaterialia, Vol. 8 (2012), p.2392.