Research Progress in Bioactive Glasses for Implant Materials

Article Preview

Abstract:

With the constant development of medical technology, biological materials become more and more important in surgical repair. Bioactive glass and glass ceramic, because of the good bioactivity and biocompatibility, are considered to be the most ideal material for bone repair and replacement. Thus in this paper the recent research progress in bioactive glasses and glass ceramics are summarized. The characteristics of component, structure and property of several kinds of bioactive glasses and glass ceramics are analyzed, the existent problems and some different solutions are also discussed, and their development foreground in surgical repair application is further forecast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-112

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.P. Cao, L.L. Hench, Bioactive Materials, Ceram. Int. 22 (1996) 493-507.

Google Scholar

[2] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthtic materials, J. Biomed. Mater. Res. 5(6) (1972) 117-141.

DOI: 10.1002/jbm.820050611

Google Scholar

[3] L.L. Hench, Bioactive ceramics: theory and clinical applications, Bioceramics. 7 (1994) 3-14.

Google Scholar

[4] L. L Hench, H.T. Stanley, A.E. Clark, M. Hall, Dental applications of bioglass implants, Bioceramics. 4 (1991) 23-28.

DOI: 10.1016/b978-0-7506-0269-3.50035-9

Google Scholar

[5] A.L. Andrade, P. Valério, A.M. Goes, M.D.F. Leite, R.Z. Domingues, Influence of morphology on in vitro compatibility of bioactive glasses, Non-Cryst. Solids. 352 (2006) 3508-3511.

DOI: 10.1016/j.jnoncrysol.2006.03.105

Google Scholar

[6] A. Oliva, A. Salerno, B. Locardi, V. Riccio, F. Della Ragione, P. Iardino, V. Zappia, Behaviour of human osteoblasts cultured on bioactive glass coatings, Biomaterials. 19 (1998) 1019-1025.

DOI: 10.1016/s0142-9612(97)00249-4

Google Scholar

[7] R.L. Xin, Y. Leng, J.Y. Chen, Q.Y. Zhang, A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo, Biomaterials. 26 (2005) 6477-6486.

DOI: 10.1016/j.biomaterials.2005.04.028

Google Scholar

[8] S. Fujibayashi, M. Neo, H.M. Kim, et al., A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses, Biomaterials. 24 (2003) 1349-1356.

DOI: 10.1016/s0142-9612(02)00511-2

Google Scholar

[9] R.F. Brown, D.E. Day, T.E. Day, S. Jung, M.N. Rahaman and Q. Fu, Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds, Acta Biomater. 4 (2008) 387-396.

DOI: 10.1016/j.actbio.2007.07.006

Google Scholar

[10] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am Ceram Soc. 74(7) (1991) 1487-1510.

Google Scholar

[11] L. Moimas, M. Biasotto, R.D. Lenarda, A. Olivo, C. Schmid, Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds, Acta Biomater. 2(2) (2006) 191-199.

DOI: 10.1016/j.actbio.2005.09.006

Google Scholar

[12] M. Wang, Bioactive Materials and Processing, in: D.L. Shi (Eds. ), Biomaterials and Tissue Engineering, Qinghua University Press, Beijing, 2004, pp.1-88.

Google Scholar

[13] K.H. Karlsson, L. Hupa, Thirty-five years of guided tissue engineering, J. Non-Cryst. Solids. 354(2-9) (2008) 717-721.

DOI: 10.1016/j.jnoncrysol.2007.06.100

Google Scholar

[14] Y. Cai, J. Wu, L. Zhou, Progress in research and development of bioglass materials, Mater. rev. 16(12) (2002) 43-45.

Google Scholar

[15] R. Teghil, L. D'Alessio, D. Ferro, S. M. Barinov, Hardness of bioactive glass film deposited on Ti alloy by pulsed laser ablation, J. Mater. Sci. Lett. 21 (2002) 379–382.

Google Scholar

[16] K.P. O'Flynn, K.T. Stanton, Laser sintering and crystallization of a bioactive glass-ceramic, J. Non-Cryst Solids. 360 (2013) 49-56.

DOI: 10.1016/j.jnoncrysol.2012.10.021

Google Scholar

[17] W. Holand, W. Vogel, K. Naumann, J. Gummel, Interface reactions between machinable bioactive glass-ceramics and bone, J. Biomed. Mater. Res. 19 (1985) 303-312.

DOI: 10.1002/jbm.820190311

Google Scholar

[18] L. Meseguer-Olmo, A. Bernabeu-Esclapez, E. Ros-Martinez, et al., In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic in the SiO2–CaO–P2O5 system, Acta Biomater. 4 (2008) 1104-1113.

DOI: 10.1016/j.actbio.2007.11.001

Google Scholar

[19] T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5, J. Mater. Sci. 21 (1986) 563–540.

DOI: 10.1007/bf01145520

Google Scholar

[20] J. Gil-Albarova, A.J. Salinas, A.L. Bueno-Lozano, et al., The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing, Biomaterial. 26 (2005) 4374-4382.

DOI: 10.1016/j.biomaterials.2004.11.006

Google Scholar