[1]
W.P. Cao, L.L. Hench, Bioactive Materials, Ceram. Int. 22 (1996) 493-507.
Google Scholar
[2]
L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthtic materials, J. Biomed. Mater. Res. 5(6) (1972) 117-141.
DOI: 10.1002/jbm.820050611
Google Scholar
[3]
L.L. Hench, Bioactive ceramics: theory and clinical applications, Bioceramics. 7 (1994) 3-14.
Google Scholar
[4]
L. L Hench, H.T. Stanley, A.E. Clark, M. Hall, Dental applications of bioglass implants, Bioceramics. 4 (1991) 23-28.
DOI: 10.1016/b978-0-7506-0269-3.50035-9
Google Scholar
[5]
A.L. Andrade, P. Valério, A.M. Goes, M.D.F. Leite, R.Z. Domingues, Influence of morphology on in vitro compatibility of bioactive glasses, Non-Cryst. Solids. 352 (2006) 3508-3511.
DOI: 10.1016/j.jnoncrysol.2006.03.105
Google Scholar
[6]
A. Oliva, A. Salerno, B. Locardi, V. Riccio, F. Della Ragione, P. Iardino, V. Zappia, Behaviour of human osteoblasts cultured on bioactive glass coatings, Biomaterials. 19 (1998) 1019-1025.
DOI: 10.1016/s0142-9612(97)00249-4
Google Scholar
[7]
R.L. Xin, Y. Leng, J.Y. Chen, Q.Y. Zhang, A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo, Biomaterials. 26 (2005) 6477-6486.
DOI: 10.1016/j.biomaterials.2005.04.028
Google Scholar
[8]
S. Fujibayashi, M. Neo, H.M. Kim, et al., A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses, Biomaterials. 24 (2003) 1349-1356.
DOI: 10.1016/s0142-9612(02)00511-2
Google Scholar
[9]
R.F. Brown, D.E. Day, T.E. Day, S. Jung, M.N. Rahaman and Q. Fu, Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds, Acta Biomater. 4 (2008) 387-396.
DOI: 10.1016/j.actbio.2007.07.006
Google Scholar
[10]
L.L. Hench, Bioceramics: From Concept to Clinic, J. Am Ceram Soc. 74(7) (1991) 1487-1510.
Google Scholar
[11]
L. Moimas, M. Biasotto, R.D. Lenarda, A. Olivo, C. Schmid, Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds, Acta Biomater. 2(2) (2006) 191-199.
DOI: 10.1016/j.actbio.2005.09.006
Google Scholar
[12]
M. Wang, Bioactive Materials and Processing, in: D.L. Shi (Eds. ), Biomaterials and Tissue Engineering, Qinghua University Press, Beijing, 2004, pp.1-88.
Google Scholar
[13]
K.H. Karlsson, L. Hupa, Thirty-five years of guided tissue engineering, J. Non-Cryst. Solids. 354(2-9) (2008) 717-721.
DOI: 10.1016/j.jnoncrysol.2007.06.100
Google Scholar
[14]
Y. Cai, J. Wu, L. Zhou, Progress in research and development of bioglass materials, Mater. rev. 16(12) (2002) 43-45.
Google Scholar
[15]
R. Teghil, L. D'Alessio, D. Ferro, S. M. Barinov, Hardness of bioactive glass film deposited on Ti alloy by pulsed laser ablation, J. Mater. Sci. Lett. 21 (2002) 379–382.
Google Scholar
[16]
K.P. O'Flynn, K.T. Stanton, Laser sintering and crystallization of a bioactive glass-ceramic, J. Non-Cryst Solids. 360 (2013) 49-56.
DOI: 10.1016/j.jnoncrysol.2012.10.021
Google Scholar
[17]
W. Holand, W. Vogel, K. Naumann, J. Gummel, Interface reactions between machinable bioactive glass-ceramics and bone, J. Biomed. Mater. Res. 19 (1985) 303-312.
DOI: 10.1002/jbm.820190311
Google Scholar
[18]
L. Meseguer-Olmo, A. Bernabeu-Esclapez, E. Ros-Martinez, et al., In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic in the SiO2–CaO–P2O5 system, Acta Biomater. 4 (2008) 1104-1113.
DOI: 10.1016/j.actbio.2007.11.001
Google Scholar
[19]
T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5, J. Mater. Sci. 21 (1986) 563–540.
DOI: 10.1007/bf01145520
Google Scholar
[20]
J. Gil-Albarova, A.J. Salinas, A.L. Bueno-Lozano, et al., The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing, Biomaterial. 26 (2005) 4374-4382.
DOI: 10.1016/j.biomaterials.2004.11.006
Google Scholar