Effect of Composite Sintering Aids on the Thermal and Mechanical Properties of Hot-Pressed Aluminum Nitride

Article Preview

Abstract:

The aim of this work was to determine the effect of composite additives on the thermal and mechanical properties of aluminum nitride (AlN) in detail. The composite system has not been studied in depth before. The hot-pressed AlN was prepared with Y2O3-Dy2O3-YF3 and Y2O3-Dy2O3-CaO as the composite sintering additives. As the result, the thermal conductivities for the sintered body with two composite additives were 171 W/m.K and 152 W/m.K, respectively. The fracture toughness values calculated by the Evans & Clarkes’s equation for both of the samples were 2.34±0.09 MPa.m1/2and 2.63±0.13 MPa.m1/2 at 10 kg load. The toughness difference is the result of comprehensive effect of the grain size, the properties of the boundary phase, its distribution, and also the interactions between different phases.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

561-564

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids. 34 (1973) 321-325.

Google Scholar

[2] L.M. Sheppard, Aluminum nitride: a versatile but challenging material,Am. Ceram. Bull. 69 (1990) 1801-1803.

Google Scholar

[3] G.A. Slack, R.A. Tanzilli, R.O. Pholand, J.W. Vandersande, The intrinsic thermal conductivity of AlN, J. phys. Chem. Solids 48 (1987) 641-647.

DOI: 10.1016/0022-3697(87)90153-3

Google Scholar

[4] Pedro Sainz de Baranda, Arne K. Knudsen, Edwin Ruh, Effect of yttria on the thermal conductivity of Aluminum Nitride, J. Am. Ceram. Soc. 77 (1994) 1846-1850.

DOI: 10.1111/j.1151-2916.1994.tb07060.x

Google Scholar

[5] Ran-Rong Lee, Development of high thermal conductivity Aluminum Nitride ceramic, J. Am. Ceram. Soc. 74 (1991) 2242-2249.

Google Scholar

[6] Y. Kurokawa, H. Hamgauchi, Y. Shimada, Development of highly thermal conductivity AlN substrate by Green Sheet Technology, Proc. IEEE. 74 (1986) 412-418.

Google Scholar

[7] G.M. Gross, H.J. Seifert, F. Aldinger, Thermodynamic Assessment and Experimental Check of Fluoride Sintering Aids for AlN, Journal of the European Society. 18 (1998) 871-877.

DOI: 10.1016/s0955-2219(97)00175-1

Google Scholar

[8] Koji Watari, M.E. Brito, M. Toriyama, S. Kanzaki, Low-Temperature sintering and high thermal conductivity of YLiO2-Doped AlN Ceramics, J. Am. Ceram. Soc. 79 (1996) 1979-(1981).

DOI: 10.1111/j.1151-2916.1996.tb08024.x

Google Scholar

[9] Liang Qiao, Heping Zhou, Kexin Chen, Renli Fu, Effect of Li2O on the low temperature sintering and thermal conductivity of AlN ceramics, Journal of the European Ceramic Society. 23 (2003) 1517-1524.

DOI: 10.1016/s0955-2219(02)00344-8

Google Scholar

[10] Xueli Du, Mingli Qin, Akhtar Farid, Islam S. Humail, Xuanhui Qu, Study of rare-earth oxide sintering aid systems for AlN ceramics, Materials Science and Engineering A . 460-461 (2007) 471-474.

DOI: 10.1016/j.msea.2007.01.137

Google Scholar

[11] T. Barrett Jackson, Anil V. Virkar, Karren L. More, High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic and Microstructural Factors, J. Am. Ceram. Sco. 80 (1997) 1421-1435.

DOI: 10.1111/j.1151-2916.1997.tb03000.x

Google Scholar

[12] Anil V. Virkar, T. Barrett Jackson, Raymond A. Culter, Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of Aluminum Nitride, J. Am. Ceram. Soc. 72 (1989) 2031-(2042).

DOI: 10.1111/j.1151-2916.1989.tb06027.x

Google Scholar

[13] Liang Qiao, Heping Zhou, Renli Fu, Thermal Conductivity of AlN ceramics sintered with CaF2 and YF3, Ceramics International. 29 (2003) 893-896.

DOI: 10.1016/s0272-8842(03)00033-6

Google Scholar

[14] A.G. Evans, E.A. Charles, Fracture Toughness Determination by Indentation, J. Am. Ceram. Soc. 59 (1976).

Google Scholar

[15] Pedro Sainz de Baranda, Arne K. Knudsen, Edwin Ruh, Effect of CaO on the thermal conductivity of Aluminum Nitride, J. Am. Ceram. Soc. 76 (1993) 1751-1760.

DOI: 10.1111/j.1151-2916.1993.tb06644.x

Google Scholar

[16] K.T. Faber, A.G. Evans, Crack Deflection Processes—I. Theory, Acta Metall. 31 (1983) 565-576.

DOI: 10.1016/0001-6160(83)90046-9

Google Scholar