Research on Zero Bias Characteristic of MEMS Accelerometer in FBW

Article Preview

Abstract:

Zero bias is an important performance index of MEMS accelerometerscope. Based on the large amount of given accelerometer experiments, we study zero bias of random error properties, temperature characteristic, large overload environment variation, and then calculate MEMS accelerometer bias, bias stability, zero bias repeatability. Through least-square method,we fit temperature scale factor and temperature bias of MEMS accelerometer. The experimental results show that the compensation method has the advantages of simple operation, effectively compensation for measuring error of MEMS accelerometer which is induced by temperature, and has strong engineering using value.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

1046-1052

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li T J, Liu Y H, Dong J X, Fan D. Adaptive stiffness adjustment of force feedback MEMS mechanical accelerometer[J]. Opt. Precision Eng., 2010, 17 (11) : 2830-2836.

Google Scholar

[2] Wu T Z, Dong J X, Liu Y F, etc. The comb tooth decay accelerometer analysis and optimize the performance of the closed-loop system[J]. Journal of instrument and meter. 2006 (3) : 285-289.

Google Scholar

[3] Feng Y X. Comb tooth decay of mechanical circuit of accelerometer and engineering research[D]. Beijing: tsinghua university, Department of Precision Instruments and Mechanology, (2004).

Google Scholar

[4] Weinberg M., Bemstein J,. Cho S., King A,T., Kourepenis A., Maciel P. A Micro machined Comb-Drive Tuning Fork rate Gyroscope[C], Proceedings of the Institute of Navigation 49th Annual Meeting, Cambridge, MA, June 2l-23. 1993: 595-602.

DOI: 10.1109/memsys.1993.296932

Google Scholar

[5] LAWRENCE A. Modern inertial technology[M]. New York: Springer-Verlag, (1993).

Google Scholar

[6] Ma JJ J, Li W Q, Zheng Z Q. MIMU Random error analysis and modeling [J]. Piezoelectric and acousto-optic. 2007, 29(4) : 483- 486.

Google Scholar

[7] R.E. Hopkins J.T. Borestein. The silicon oscillating accelerometer: A MEMS inertial instrument for strategic missile guidance [M]. The Missile Science Conference, 2000: 45-51.

Google Scholar

[8] Alexander A. Trusov, Sergei A. Zotov, Brenton R. Simon, Andrei M. Shkel. Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on[J]. J Opt. Precision Eng., 2010, (12) : 2583-2588.

DOI: 10.1109/memsys.2013.6474168

Google Scholar

[9] Shi R, Qiu A P, Su Y. The implementation and performance of the silicon resonant accelerometer test[C]. 2013(1): 29-32.

Google Scholar

[10] MaJianjun, Li Wenqiang, Zheng  Zhiqiang. MIMU random error analysis and modeling[J]. Pie-zoelectric sound and light. 2007, 29(4): 483- 486.

Google Scholar

[11] Liu J, Shi Y B, Li J. Micro inertial technology [M]. Beijing: electronic industry press, 2005. 11: 193-234.

Google Scholar