[1]
M. Otto, M. Floyd, S. Bajpai, Nanotechnology for site remediation, Remediation Journal, 19 (2008) 99-108.
DOI: 10.1002/rem.20194
Google Scholar
[2]
Z. Xiong, F. He, D. Zhao, M.O. Barnett, Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles, Water research, 43 (2009) 5171-5179.
DOI: 10.1016/j.watres.2009.08.018
Google Scholar
[3]
R. Liu, D. Zhao, Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles, Water research, 41 (2007) 2491-2502.
DOI: 10.1016/j.watres.2007.03.026
Google Scholar
[4]
P. Varanasi, A. Fullana, S. Sidhu, Remediation of PCB contaminated soils using iron nano-particles, Chemosphere, 66 (2007) 1031-1038.
DOI: 10.1016/j.chemosphere.2006.07.036
Google Scholar
[5]
R. De La Torre-Roche, J. Hawthorne, C. Musante, B. Xing, L.A. Newman, X. Ma, J.C. White, Impact of Ag Nanoparticle Exposure on p, p'-DDE Bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean), Environmental science & technology, 47 (2013).
DOI: 10.1021/es3041829
Google Scholar
[6]
J. Theron, J. Walker, T. Cloete, Nanotechnology and water treatment: applications and emerging opportunities, Critical reviews in microbiology, 34 (2008) 43-69.
DOI: 10.1080/10408410701710442
Google Scholar
[7]
M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environmental Science & Technology, 42 (2008) 5843-5859.
DOI: 10.1021/es8006904
Google Scholar
[8]
C.M. Rico, S. Majumdar, M. Duarte-Gardea, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Interaction of nanoparticles with edible plants and their possible implications in the food chain, Journal of agricultural and food chemistry, 59 (2011).
DOI: 10.1021/jf104517j
Google Scholar
[9]
W.G. Kreyling, M. Semmler-Behnke, W. Möller, Health implications of nanoparticles, Journal of Nanoparticle Research, 8 (2006) 543-562.
DOI: 10.1007/s11051-005-9068-z
Google Scholar
[10]
A. Goho, Tiny trouble: nanoscale materials damage fish brains, Science news, 165 (2004) 211-211.
DOI: 10.2307/4015170
Google Scholar
[11]
R. Selvakumar, N. Arul Jothi, V. Jayavignesh, K. Karthikaiselvi, G.I. Antony, P. Sharmila, S. Kavitha, K. Swaminathan, As (V) removal using carbonized yeast cells containing silver nanoparticles, Water research, 45 (2011) 583-592.
DOI: 10.1016/j.watres.2010.09.034
Google Scholar
[12]
F. He, D. Zhao, C. Paul, Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones, Water Research, 44 (2010) 2360-2370.
DOI: 10.1016/j.watres.2009.12.041
Google Scholar
[13]
S. Krajangpan, H. Kalita, B.J. Chisholm, A.N. Bezbaruah, Iron Nanoparticles Coated with Amphiphilic Polysiloxane Graft Copolymers: Dispersibility and Contaminant Treatability, Environmental Science & Technology, 46 (2012) 10130-10136.
DOI: 10.1021/es3000239
Google Scholar
[14]
Y. Xu, D. Zhao, Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles, Water research, 41 (2007) 2101-2108.
DOI: 10.1016/j.watres.2007.02.037
Google Scholar
[15]
I. Ojea-Jiménez, X. López, J. Arbiol, V. Puntes, Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters, ACS nano, 6 (2012) 2253-2260.
DOI: 10.1021/nn204313a
Google Scholar