Accurate and Traceable Calibration of the Stiffness of Various AFM Cantilevers

Article Preview

Abstract:

Atomic force microscope (AFM) is widely used to measure nanoforce in the analysis of nanomechanical and biomechanical properties. As the critical factor in the nanoforce measurement, the stiffness of the AFM cantilever must be determined properly. In this paper, an accurate and SI-traceable calibration method is presented to obtain the stiffness of the AFM cantilever in the normal direction. The calibration system consists of a homemade AFM head and an ultra-precision electromagnetic balance. The calibration is based on the Hooke's law i.e. the stiffness is equal to the force divided by the deflection of the cantilever. With this system, three kinds of cantilevers were calibrated. The relative standard deviation is better than 1%. The results of these experiments showed good accuracy and repeatability.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

817-823

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.K. Hansma, V.B. Elings, O. Marti, C.E. Bracker, Scanning tunneling microscopy and atomic force microscopy: application to biology and technology, Science (New York, N.Y. ), 242 (1988) 209-216.

DOI: 10.1126/science.3051380

Google Scholar

[2] A. Alessandrini, P. Facci, AFM: a versatile tool in biophysics, Measurement Science and Technology, 16 (2005) R65-R92.

DOI: 10.1088/0957-0233/16/6/r01

Google Scholar

[3] H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, 59 (2005) 1-152.

DOI: 10.1016/j.surfrep.2005.08.003

Google Scholar

[4] M. -S. Kim, J.R. Pratt, SI traceability: Current status and future trends for forces below 10 microNewtons, Measurement, 43 (2010) 169-182.

DOI: 10.1016/j.measurement.2009.09.005

Google Scholar

[5] C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza, J. Esteve, Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope, Sensor Actuat a-Phys, 74 (1999) 134-138.

DOI: 10.1016/s0924-4247(98)00347-1

Google Scholar

[6] F. Gaboriaud, Y.F. Dufrêne, Atomic force microscopy of microbial cells: Application to nanomechanical properties, surface forces and molecular recognition forces, Colloids and Surfaces B: Biointerfaces, 54 (2007) 10-19.

DOI: 10.1016/j.colsurfb.2006.09.014

Google Scholar

[7] M. -S. Kim, J. -H. Choi, J. -H. Kim, Y. -K. Park, Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods, Measurement, 43 (2010) 520-526.

DOI: 10.1016/j.measurement.2009.12.020

Google Scholar

[8] C.A. Clifford, M.P. Seah, The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis, Nanotechnology, 16 (2005) 1666-1680.

DOI: 10.1088/0957-4484/16/9/044

Google Scholar

[9] C.T. Gibson, D. Alastair Smith, C.J. Roberts, Calibration of silicon atomic force microscope cantilevers, Nanotechnology, 16 (2005) 234-238.

DOI: 10.1088/0957-4484/16/2/009

Google Scholar

[10] S. Wu, Q. Chen, Z. Zhang, X. Fu, X. Hu, X. Hu, Calibration of the spring constant of AFM micro-cantilever based on bending method, Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 33 (2012) 2446-2453.

Google Scholar

[11] S.M. Cook, K.M. Lang, K.M. Chynoweth, M. Wigton, R.W. Simmonds, T.E. Schäffer, Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants, Nanotechnology, 17 (2006) 2135-2145.

DOI: 10.1088/0957-4484/17/9/010

Google Scholar

[12] N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendler, Comparison of calibration methods for atomic-force microscopy cantilevers, Nanotechnology, 14 (2003) 1-6.

DOI: 10.1088/0957-4484/14/1/301

Google Scholar

[13] H. -J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, 59 (2005) 1-152.

DOI: 10.1016/j.surfrep.2005.08.003

Google Scholar

[14] P.J. Cumpson, J. Hedley, Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI, Nanotechnology, 14 (2003) 1279-1288.

DOI: 10.1088/0957-4484/14/12/009

Google Scholar

[15] J.F. Portoles, P.J. Cumpson, A compact torsional reference device for easy, accurate and traceable AFM piconewton calibration, Nanotechnology, 24 (2013) 15.

DOI: 10.1088/0957-4484/24/33/335706

Google Scholar

[16] M.S. Kim, I.M. Choi, Y.K. Park, D.I. Kang, Atomic force microscope probe calibration by use of a commercial precision balance, Measurement, 40 (2007) 741-745.

DOI: 10.1016/j.measurement.2006.08.002

Google Scholar

[17] M.S. Kim, J.H. Choi, Y.K. Park, Calibration of the spring constants of various AFM cantilevers with the small uncertainty level of 2%, 2006 SICE-ICASE International Joint Conference, Vols 1-13, (2006) 175-180.

DOI: 10.1109/sice.2006.314740

Google Scholar

[18] E.D. Langlois, G.A. Shaw, J.A. Kramar, J.R. Pratt, D.C. Hurley, Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard, The Review of scientific instruments, 78 (2007) 093705.

DOI: 10.1063/1.2785413

Google Scholar