p.859
p.865
p.869
p.875
p.881
p.888
p.896
p.900
p.906
Experimental Investigations on New Characterization Method for Giant Piezoresistance Effect and Silicon Nanowire Piezoresistive Detection
Abstract:
This paper presents a novel and effective characterization method for giant piezoresistive properties of silicon nanowires by using the reference structures. This contrast detection approach investigates the influences of quantum size effect and surface defects effect on piezoresistive coefficients of silicon nanowires by direct comparison of the resistivity change ratio of silicon wires with nanoscale-to-microscale width under the same applied stress conditions. The characterization experiments based on four-point bending tensile test demonstrate that piezoresistive coefficient of small nanowidth silicon nanowire can be significantly increased to about five times higher levels than that of bulk silicon under the same impurity concentration, which indicates that the silicon nanowire can have giant piezoresistive effect. On the other hand, to solve the problem on nanowires pick-up, we proposed a nanowire piezoresistive detection approach, whose validity is confirmed by the dynamic LDV resonance test. Meanwhile, to investigate the influence of undercut arising from the wet chemical release process of the suspended silicon nanowire, a three-dimensional finite element simulation is also carried out for the fundamental resonant frequency using ANSYS software. The numerical and experimental results show that our piezoresistive detection is accurate and effective and the undercut should be carefully considered in the design of the high frequency resonator and mixer. The findings of this paper provide some useful references for the piezoresistive effect measurement and the piezoresistive pick-up in nanoelectromechanical system.
Info:
Periodical:
Pages:
881-887
Citation:
Online since:
May 2015
Authors:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: