Preparation of Poly(Lactic Acid) Acrylate for UV-Curable Coating Applications

Article Preview

Abstract:

UV-curable process is widely used for paints, inks and adhesives due to its rapid curing, low energy consumption, high efficiency and low volatile organic compounds (VOCs). The objective of this research is to prepare poly(lactic acid) (PLA) based UV-curable coating by using glycolyzed PLA. PLA was glycolyzed by ethylene glycol (EG) at 170°C for 90 minutes. The obtained glycolyzed PLA was reacted with methacrylic anhydride (MAAH) to provide PLA acrylate oligomer. The obtained PLA acrylate oligomer was used in coating formulations with various amounts of photoinitiator and cured under UV radiation. Physical properties of cured coating film were investigated such as pencil hardness, gloss and haze. The results showed that poly(lactic acid) (PLA) based UV-curable coating provided good physical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

570-574

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Schwalm, Chapter 1 - Introduction to Coatings Technology, in: UV Coatings, Elsevier, Amsterdam, 2007, pp.1-18.

Google Scholar

[2] R. Schwalm, Chapter 2 - The UV Curing Process, in: UV Coatings, Elsevier, Amsterdam, 2007, pp.19-61.

DOI: 10.1016/b978-044452979-4/50002-0

Google Scholar

[3] Z. Chen, J.F. Wu, S. Fernando, and K. Jagodzinski, Soy-based, high biorenewable content UV curable coatings, Prog. Org. Coat. 71 (2011) 98-109.

DOI: 10.1016/j.porgcoat.2011.01.004

Google Scholar

[4] L. Xiao, B. Wang, G. Yang, and M. Gauthier, Chapter 11 - Poly(Lactic Acid)-based biomaterials: synthesis, modification and applications, in: D.N. Ghista (Eds. ), Biomedical Science, Engineering and Technology, InTech, 2012, pp.247-282.

DOI: 10.5772/23927

Google Scholar

[5] A.O. Helminen, H. Korhonen, and J.V. Seppälä, Structure modification and crosslinking of methacrylated polylactide oligomers, J. Appl. Polym. Sci. 86 (2002) 3616-3624.

DOI: 10.1002/app.11193

Google Scholar

[6] G. r. Coullerez, C. Lowe, P. Pechy, H. Kausch, and J.N. Hilborn, Synthesis of acrylate functional telechelic poly(lactic acid) oligomer by transesterification, J. Mater. Sci. -Mater. M. 11 (2000) 505-510.

DOI: 10.1023/a:1008948325177

Google Scholar

[7] K.R. Miller and M.D. Soucek, Photopolymerization of biocompatible films containing poly(lactic acid), Eur. Polym. J. 48 (2012) 2107-2116.

DOI: 10.1016/j.eurpolymj.2012.08.006

Google Scholar

[8] S. Joshi: submitted to NUiCONE-2011 (2011).

Google Scholar

[9] G. Xi, M. Lu, and C. Sun, Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate), Polym. Degrad. Stabil. 87 (2005) 117-120.

DOI: 10.1016/j.polymdegradstab.2004.07.017

Google Scholar

[10] V. Jankauskaitė, G. Macijauskas, and R. Lygaitis, Polyethylene terephthalate waste recycling and application possibilities: a review, Mater. Sci. 14 (2008) 119-127.

Google Scholar

[11] J. Purohit, G. Chawada, B. Choubisa, M. Patel, and B. Dholakiya, Polyester polyol derived from waste poly(ethylene terephthalate) for coating application on mild steel, Chem. Sci. J. 76 (2012) 1-7.

Google Scholar

[12] D.J. Suh, O.O. Park, and K.H. Yoon, The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polymer 41 (2000) 461-466.

DOI: 10.1016/s0032-3861(99)00168-8

Google Scholar

[13] J. Tounthai, A. Petchsuk, P. Opaprakasit, and M. Opaprakasit, Curable polyester precursors from polylactic acid glycolyzed products, Polym. Bull. 70 (2013) 2223-2238.

DOI: 10.1007/s00289-013-0940-1

Google Scholar

[14] B.C. Benicewicz and P.K. Hopper, Review : Polymers for absorbable surgical sutures−−part II, J. Bioact. Compat. Pol. 6 (1991) 64-94.

DOI: 10.1177/088391159100600106

Google Scholar

[15] S. l. Yang, Z.H. Wu, W. Yang, and M.B. Yang, Thermal and mechanical properties of chemical crosslinked polylactide (PLA), Polym. Test. 27 (2008) 957-963.

DOI: 10.1016/j.polymertesting.2008.08.009

Google Scholar

[16] R. Schwalm, Chapter 4 - Raw Materials, in: UV Coatings, Elsevier, Amsterdam, 2007, pp.94-139.

Google Scholar

[17] J.L. Espartero, I. Rashkov, S.M. Li, N. Manolova, and M. Vert, NMR analysis of low molecular weight poly(lactic acid)s, Macromolecules 29 (1996) 3535-3539.

DOI: 10.1021/ma950529u

Google Scholar