Confined Growth of WO3 for High-Performance Electrochromic Device

Article Preview

Abstract:

Nanoscale material world attracted researchers because of their outstanding properties and prospective novel applications. Tungsten trioxide semiconductor is one of the fundamental functional materials due to its versatile application as gas sensors, solar cells, and smart windows. Confined growth of the metal oxide nanostructures can tune the electrical and optical properties for modern device application. The management of morphology is a challenge to investigate the ultimate performance. In this paper, self-assembled growth of four different tungsten trioxide nanostructures were carried using a different structure directing agents through either co-precipitation or hydrothermal techniques. The monoclinic spherical and rod-like WO3 nanostructures were obtained by acid precipitation method. WO3 nanocuboids and nanofibers were synthesized hydrothermally using HBF4 and NaCl as structure directing reagents to attain monoclinic and hexagonal crystal phases, respectively. Analytical techniques like XRD, TEM, and FESEM imaging methods were used to confirm the phase and morphology. All the nanopowders were calculated to have similar band gap energy at visible wavelength. A simple dip coated WO3/ITO fabricated electrode was used as a reference electrode to carry out the electrochemical measurements for all nanopowders. The evaluated properties suggested the plausible use of WO3 nanofibers for high efficient electrochromic device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

583-587

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara, Small 4 (2008) 1813-1822.

Google Scholar

[2] D. Chen, H. Wang, R. Zhang, L. Gao, Y. Sugahara, A. Yasumori, J. Ceram. Process. Res. 9 (2008) 596–600.

Google Scholar

[3] B. I. Kharisov, Recent Pat. Nanotechnol. 2 (2008) 190–200.

Google Scholar

[4] F. Tonus, V. Fuster, G. Urretavizcaya, F. J. Castro, J. L. Bobet, Int. J. Hydrogen Energy 34 (2009) 3404–4309.

Google Scholar

[5] D. J. Ham, A. Phuruangrat, S. Thongtem, J. S. Lee, Chem. Engg. J., 165 (2010) 365-369.

Google Scholar

[6] M. Breedon, P. Spizzirri, M. Taylor, J. D. Plessis, D. McCulloch, J. Zhou, L. Yu, Z. Hu, C. Rix, Crystal Growth and Design 10 (2010) 430-434.

DOI: 10.1021/cg9010295

Google Scholar

[7] X. Li, T. Lou, X. Sun, Y. Li, Inorganic Chemistry 43 (2004) 5442-5446.

Google Scholar

[8] T. Kida, A. Nishiyama, M. Yuasa, K. Shimanoe, N. Yamazoe, Sensors and Actuators B: Chemical 135 (2009) 568-573.

DOI: 10.1016/j.snb.2008.09.056

Google Scholar

[9] S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichand, O.Y. Khyzhun, Nanoscale Res. Lett. 4 (2009) 1335-1342.

Google Scholar

[10] S. Adhikari, D. Sarkar, Electrochimica Acta 138 (2014) 115-123.

Google Scholar

[11] M.A. Gondal, K. Hayat, M. M. Khaled, Z.H. Yamani, S. Ahmed, Int. J. Nanoparticles 4 (2011) 53-63.

Google Scholar

[12] S. Adhikari, D. Sarkar, RSC Advances 4 (2014) 20145-20153.

Google Scholar

[13] B. Pecquenard, S. C. Garcia, J. Livage, P. Y. Zavalij, M. S. Whittingham, R. Thouvenot, Chem. Mater. 10 (1998) 1882-1887.

Google Scholar

[14] B. Yang, Y. Zhang, E. Drabarek, P. R. F. Barnes, V. Luca, Mater. Chem. 19 (2007) 5664-5669.

Google Scholar

[15] M. A. Butler, J. Appl. Phys. 84 (1977) 1914-(1919).

Google Scholar

[16] H. J. Yuan, Y. Q. Chen, F. Yu, Y. H. Peng, X. W. He, D. Zhao, D. S. Tang, Chin. Phys. B 20 (2011) 036103-036105.

Google Scholar

[17] S. R. Bathe, P. S. Patil, Sol. Energy Mater. And Sol. Cells 91 (2007) 1097-1101.

Google Scholar

[18] S. Papaefthimiou, G. Leftheriotis, P. Yianoulis, Electrochimica Acta 46 (2001) 2145-2150.

DOI: 10.1016/s0013-4686(01)00393-0

Google Scholar

[19] L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, Scientific Reports 3 (2013) 1936-(1944).

Google Scholar