[1]
Tahir, T. A & Hamid, F. S. Vermicomposting of Two Types of Coconut Waste Employing Eudrilus Eugeniae: A Comparative Study. International Journal Of Recycling of Organic Waste in Agriculture, Vol. 1 (7) (2012).
DOI: 10.1186/2251-7715-1-7
Google Scholar
[2]
Pinho, C. D., Assis, J. De, Faria, F., Bassani, T., & Dantas, H. Testing the Use of Coconut Fiber as a Cushioning Material for Transport Packaging, (March), 151–156 (2012).
DOI: 10.4236/msa.2012.33023
Google Scholar
[3]
Wei, W., Gu, H. Characterisation and Utilization of Natural Coconut Fibres Composites. Material and Design, Vol. 30 (2009), pp.2741-2744.
DOI: 10.1016/j.matdes.2008.11.002
Google Scholar
[4]
Khalil, H. P. S. A., Alwani, M. S., & Omar, A. K. M. Distribution, and Cell Wall Structure Of Malaysian Plant Waste Fibers, 1, 220–232 (2006).
DOI: 10.15376/biores.1.2.220-232
Google Scholar
[5]
Hasan, N. M. S., Sobuz, H. R., Sayed, M. S. & Islam, M. S. The Use of Coconut Fibre in the Production of Structural Lightweight Concrete. Journal of Applied Sciencs 12(9): 831-839 (2012).
Google Scholar
[6]
Banhidi, V. & Gomze, L. A. Improvement of Insulation Properties of Conventional Brick Products. Material Science Forum, Vol. 589 (2008), pp.1-6.
Google Scholar
[7]
Kadir, A. A. & Ariffin, N. M. Effects of Utilizing Rice Husk in Fired Clay Brick. International Journal of Zero Waste Generation, Vol. 1 (1) (2013), pp.27-34.
Google Scholar
[8]
Kadir, A. A., Mohd Zahari, N. A. & Azizi Mardi, N. Utilization of Palm Oil Waste into Fired Clay Brick. Advances in Environmental Biology, Vol. 7 (12) (2013), pp.3826-3834.
Google Scholar
[9]
Saiah, R., Perrin, B., & Rigal, L. Improvement of Thermal Properties of Fired Clays by Introduction of Vegetable Matter. Journal of Building Physics. Vol. 34 (2) (2010), pp.124-142.
DOI: 10.1177/1744259109360059
Google Scholar
[10]
Lertwattanaruk, P. & Choksiriwanna. J. The Physical and Thermal Properties of Adobe Brick Containing Baggase for Earth Construction. Journal of Architectural/Planning Research and Studies, Vol. 5 (1) (2011), pp.187-199.
DOI: 10.56261/built.v1.170319
Google Scholar
[11]
Chan, C. M. Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties. World Academy of Science, Engineering and Technology, (2011), pp.51-57.
Google Scholar
[12]
Kadir, A. A. & Mohajerani, A. Properties Improvement of Fired Clay Bricks Incorporating with Cigarette Butts. Advances Materials Research, Vol. 535-537 (2012), pp.1723-1730.
DOI: 10.4028/www.scientific.net/amr.535-537.1723
Google Scholar
[13]
BS 1377-2 (1990). British Standard (BS). Methods on Test for Soils or Civil Engineering Purposes; Part 2: Classification Test.
Google Scholar
[14]
BS 3921: 2 (1985). British Standard (BS). Specification for Clay Bricks.
Google Scholar
[15]
Kadir, A. A., & Musa, F. M. Gas Emissions of Clay Brick and Cigarette Butt (CB) Brick at Different Heating Rates, 1(1) (2012), 4.
Google Scholar
[16]
Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L. & Cheesman, C. Lightweight Bricks Manufactured from Water Treatment Sludge and Rice Husks. Journal of Hazardous Materials, Vol. 171 (1-3) (2009), pp.76-82.
DOI: 10.1016/j.jhazmat.2009.05.144
Google Scholar
[17]
Weng, C. H., Lin, D. F. & Chiang, P. C. Utilization of Sludge as Brick Materials. Advances in Environmental Research, 7 (2003), pp.679-685.
DOI: 10.1016/s1093-0191(02)00037-0
Google Scholar
[18]
Kadir, A. A. & Mohajerani, A. A. Possible Utilization of Cigarette Butts in Light-Weight Fired Clay Bricks. International Journal of Environmental Science and Engineering, Vol. 2 (3) (2010).
Google Scholar
[19]
Phonphuak. N. & Thiansem, S. Effects of Charcoal on Physical and Mechanical Properties of Fired Test Briquettes. Scienceasia, Vol. 37 (2011), pp.120-124.
Google Scholar