[1]
U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science, 48: 3 (2003) 171-173.
DOI: 10.1016/s0079-6425(02)00003-8
Google Scholar
[2]
H. Mecking, Y. Estrin, Microstructure related constitutive modelling of plastic deformation. In: 8th International Symposium on Metallurgy and Material Science, Riso, Denmark, (1987).
Google Scholar
[3]
Y. Estrin, H. Mecking, A unified phenomenological description of work-hardening and creep based on one-parameter models, Acta Metall. 32 (1984) 57-70.
DOI: 10.1016/0001-6160(84)90202-5
Google Scholar
[4]
Y. Zhou, K.W. Neale, L.S. Toth, A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals, Int. J. Plasticity. 9 (1993) 961-978.
DOI: 10.1016/0749-6419(93)90061-t
Google Scholar
[5]
J.W. Hutchinson, Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials, Proc. R Soc. London. A348 (1976) 101-127.
DOI: 10.1098/rspa.1976.0027
Google Scholar
[6]
D. Peirce, R.J. Asaro, A. Needleman, An Analysis of Non-uniform and Localized Deformation in Ductile Single Crystals, Acta Metall. 31 (1983) (1951).
DOI: 10.1016/0001-6160(82)90005-0
Google Scholar
[7]
R.J. Asaro, A. Needleman, Texture Development and Strain Hardening in Rate Dependent Polycrystals, Acta Metall. 33: 6 (1985) 923-953.
DOI: 10.1016/0001-6160(85)90188-9
Google Scholar
[8]
J.W. Hutchinson, Elastic-plastic behavior of polycrystalline metals and composites. Proc. R. Soc., London A319 (1970) 247-272.
Google Scholar
[9]
R.J. Asaro, Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23 (1983) 1-115.
Google Scholar
[10]
J. Lin, T.A. Dean, Modelling of microstructure evolution in hot forming using unified constitutive equations, J. Mater. Process. Tech. 167 (2005) 354-362.
DOI: 10.1016/j.jmatprotec.2005.06.026
Google Scholar
[11]
W. Zhuang, S. Wang, J. Lin, D. Balint, C. Hard, et al, Experimental and numerical investigation of localized thinning in hydroforming of micro-tubes, European J. of Mechanics A/Solids, 31 (2012) 67-76.
DOI: 10.1016/j.euromechsol.2011.06.017
Google Scholar
[12]
P. Zhang, M. Karimpour, D. Balint, J. Lin, et al, Three-dimensional virtual grain structure generation with grain size control, Mech. Mater. 55 (2012) 89-101.
DOI: 10.1016/j.mechmat.2012.08.005
Google Scholar
[13]
W. Zhuang, S. Wang, J. Cao, J. Lin, C. Hartl C et al, Modelling of localised thinning features in the hydroforming of micro-tubes using the crystal-plasticity FE method, Int. J. Adv. Manuf. Tech. 47 (2010) 859-865.
DOI: 10.1007/s00170-009-2134-4
Google Scholar
[14]
D. S. Balint, S. Wang, J. Lin, Size Effects in Micro-Forming, Steel Res Int. 81 (2010) 1229-1232.
Google Scholar
[15]
J. Cao, W. Zhuang, S. Wang, J. Lin et al, Development of a VGRAIN system for CPFE analysis in micro-forming applications, Int. J. Adv. Manuf. Tech. 47 (2010) 981-991.
DOI: 10.1007/s00170-009-2135-3
Google Scholar
[16]
S. Wang, W. Zhuang, J. Cao, J. Lin et al, An investigation of springback scatter in forming ultra-thin metal-sheet channel parts using crystal plasticity FE analysis, Int. J. Adv. Manuf. Tech. 47 (2010) 845-852.
DOI: 10.1007/s00170-009-2132-6
Google Scholar
[17]
F.J. Harewood, P.E. McHugh, Investigation of finite element mesh independence in rate dependent materials, Comp. Mater. Sci. 37 (2006) 442-453.
DOI: 10.1016/j.commatsci.2005.11.004
Google Scholar
[18]
U.F. Kocks, Acta Metall. 8 (1960) 345-352.
Google Scholar