Effect of Microstructure and Mechanical Properties Formation of Medium Carbon Steel Wire through Continuous Combined Deformation

Article Preview

Abstract:

The combination of different types of deformation can create a continuous method that ensures the formation of ultrafine-grain structure in medium carbon steel wire. The method is based on drawing operation combined with torsion and bending. Tools and equipment applied in the wire and cables manufacturing are used for the implementation of this method. As a result of the combined strain effect the ultrafine homogeneous structure is formed in the medium carbon steel wire. The wire has increased strength while maintaining the plastic properties when compared with the corresponding properties after drawing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-207

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.T. Zhu, T.G. Langdon, Fundamentals of nanostructured materials by severe plastic deformation, JOM. 10 (2004) 58-63.

DOI: 10.1007/s11837-004-0294-0

Google Scholar

[2] Terry C. Lowe, R.Z. Valiev, Investigations and applications of severe plastic deformation. NATO science series, Partnership sub-series 3, High technology, Springer, (2000).

Google Scholar

[3] Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications, edited by S.H. Whang. Polytechnic Institute of NYU, USA Woodhead Publishing Series in Metals and Surface Engineering. 40 (2011).

Google Scholar

[4] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] B. Verlinden, Severe plastic deformation of metals. In Proc. 2nd International Conference «Deformation Processing and Structure of Materials»: 26. – 28. 5. 2005. Belgrade, Serbia and Montenegro, 3 -18.

Google Scholar

[6] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals – Manufacturing Technology 57 (2008) 716-735.

DOI: 10.1016/j.cirp.2008.09.005

Google Scholar

[7] M. Chukin, A. Korchunov, M. Polyakova, D. Emaleeva, Forming ultrafine-grain structure in steel wire by continuous deformation, Steel in Translation. 40 6 (2010) 595-597.

DOI: 10.3103/s0967091210060203

Google Scholar

[8] E. Golubchik, M. Polyakova, A. Gulin, Adaptive approach to quality management in combined methods of material processing, Applied Mechanics and Materials 656 (2014) 497-506.

DOI: 10.4028/www.scientific.net/amm.656.497

Google Scholar

[9] K. Muszka, L. Madej, J. Majta. The effects of deformation and microstructure inhomogenities in the Accumulative Angular Drawing, Mater. Sci. Eng. A 574 (2013) 68-74.

DOI: 10.1016/j.msea.2013.03.024

Google Scholar

[10] M. Zelin, R.M. Shemenski. Ductility of pearlitic wires under different loading. 2006 Conference Proceedings of the Wire Association International. 20. – 24. 5. 2006. Boston, MA, United States, 1-14.

Google Scholar

[11] S. Torizuka, A. Ohmori, S.V.S. Narayana Murty, K. Nagai. Effect of strain on the microstructure and mechanical properties of multi-pass warm caliber rolled low carbon steel, Scripta Mater. 54 (2006) 563-568.

DOI: 10.1016/j.scriptamat.2005.10.055

Google Scholar

[12] J. Yanagimoto, J. Tokutomi, K. Hanazaki, N. Tsuji. Continuous bending-drawing process to manufacture the ultrafine copper wire with excellent electrical and mechanical properties, CIRP Annals – Manufacturing Technology. 60 (2011) 279-282.

DOI: 10.1016/j.cirp.2011.03.148

Google Scholar

[13] Y.G. Ko, S. Namgung, D.H. Shin, I.H. Son, D. -L. Lee, Spheriodization of medium carbon steel fabricated by continuous shear drawing, J. Mater. Sci. 45 (2010) 4866-4870.

DOI: 10.1007/s10853-010-4587-0

Google Scholar

[14] M. Chukin, M. Polyakova, E. Golubchik, V. Rudakov, S. Noskov, A. Gulin, RU Patent 2, 467, 816. (2012).

Google Scholar

[15] M. Polyakova, M. Chukin, E. Golubchik, A. Gulin, RU Patent 130, 525. (2013).

Google Scholar