Microfiber Optics Liquid Refractometer: The Effect of Taper Waist

Article Preview

Abstract:

A simple tapered multimode fiber (MMF) optic sensor is proposed and demonstrated as a refractometer for liquid samples application. The working mechanism of such device is based on the intensity modulated transmission of the tapered fiber when it is immersed in solutions with increasing refractive index. The tapered fiber is fabricated using heat-pulling method to achieve a waist diameter of 40, 50 and 75μm over the length of 18 mm. The performance of the tapered fiber with different waist has been evaluated on samples of ethylene glycol solution and glycerol. The obtained results show good correlation with the data provided by a commercial refractometer. The main advantages of this sensor are its enablement of miniaturization and simplification, ease to fabricate and handle while providing high accuracy measurement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sabri, S.A. Aljunid, M.S. Salim, S. Fouad, Fiber optic sensors: Short review and applications, Springer Ser. Mater. Sci. 204 (2015) 299–311.

DOI: 10.1007/978-981-287-128-2_19

Google Scholar

[2] W. Zhou, Y. Zhou, J. Albert, A true fiber optic refractometer, Laser Photonics Rev. 11 (2017).

DOI: 10.1002/LPOR.201600157

Google Scholar

[3] G. Aronne, P. Malara, Fiber-optic refractometer for in vivo sugar concentration measurements of low-nectar-producing flowers, New Phytol. 224 (2019) 987–993. https://doi.org/.

DOI: 10.1111/NPH.16084

Google Scholar

[4] B.K. Tariyal, A.H. Cherin, Optical Fiber Communications, Encycl. Phys. Sci. Technol. (2003) 271–294.

DOI: 10.1016/B0-12-227410-5/00521-4

Google Scholar

[5] G. Krishnan, N. Bidin, M. Abdullah, M.F.S. Ahmad, M.A.A. Bakar, M. Yasin, Liquid refractometer based mirrorless fiber optic displacement sensor, Sensors Actuators A Phys. 247 (2016) 227–233.

DOI: 10.1016/J.SNA.2016.05.040

Google Scholar

[6] H. Ujihara, N. Hayashi, K. Minakawa, M. Tabaru, Y. Mizuno, K. Nakamura, Polymer optical fiber tapering without the use of external heat source and its application to refractive index sensing, Appl. Phys. Express. 8 (2015) 072501.

DOI: 10.7567/APEX.8.072501

Google Scholar

[7] S.W. Harun, H.Z. Yang, H. Ahmad, Theoretical and experimental studies on liquid refractive index sensor based on bundle fiber, Sens. Rev. 31 (2011) 173–177. https://doi.org/.

DOI: 10.1108/02602281111110031

Google Scholar

[8] R.M. Andre, C.R. Biazoli, S.O. Silva, M.B. Marques, C.M.B. Cordeiro, O. Frazao, Strain-temperature discrimination using multimode interference in tapered fiber, IEEE Photonics Technol. Lett. 25 (2013) 155–158.

DOI: 10.1109/LPT.2012.2230617

Google Scholar

[9] F. Jiménez, G. Aldabaldetreku, G. Durana, J. Arrue, J. Mateo, J. Zubia, M. Lomer, Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors, Opt. Express, Vol. 16, Issue 21, Pp. 16616-16631. 16 (2008) 16616–16631.

DOI: 10.1364/OE.16.016616

Google Scholar

[10] D. Monzón-Hernández, D. Luna-Moreno, J. Villatoro, In-line optical fiber sensors based on cladded multimode tapered fibers, Appl. Opt. Vol. 43, Issue 32, Pp. 5933-5938. 43 (2004) 5933–5938.

DOI: 10.1364/AO.43.005933

Google Scholar

[11] C.A.J. Gouveia, J.M. Baptista, P.A.S. Jorge, Refractometric Optical Fiber Platforms for Label Free Sensing, Curr. Dev. Opt. Fiber Technol. (2013).

DOI: 10.5772/55376

Google Scholar

[12] K.T. V. Grattan, B.T. Meggitt, Optical fiber sensor technology, (1995) 499.

Google Scholar

[13] S. Korposh, S.W. James, S.-W. Lee, R.P. Tatam, Tapered Optical Fibre Sensors: Current Trends and Future Perspectives, Sensors 2019, Vol. 19, Page 2294. 19 (2019) 2294.

DOI: 10.3390/S19102294

Google Scholar

[14] S.H. Girei, A.A. Shabaneh, H. Ngee-Lim, M.N. Hamidon, M.A. Mahdi, M.H. Yaacob, Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water, Opt. Rev. 2015 223. 22 (2015) 385–392.

DOI: 10.1007/S10043-015-0075-8

Google Scholar

[15] W. Jin, H.L. Ho, Y.C. Cao, J. Ju, L.F. Qi, Gas detection with micro- and nano-engineered optical fibers, Opt. Fiber Technol. 19 (2013) 741–759. https://doi.org/10.1016/J. YOFTE.2013.08.004.

DOI: 10.1016/j.yofte.2013.08.004

Google Scholar

[16] A. Greenstein, A. Katzir, A. Messica, Theory of fiber-optic, evanescent-wave spectroscopy andsensors, Appl. Opt. Vol. 35, Issue 13, Pp. 2274-2284. 35 (1996) 2274–2284. https://doi.org/.

DOI: 10.1364/AO.35.002274

Google Scholar

[17] A. Wang, J.M. Weiss, K. Rahnavardy, V. Arya, Investigation and application of the frustrated-total-internal-reflection phenomenon in optical fibers, Appl. Opt. Vol. 36, Issue 10, Pp. 2183-2187. 36 (1997) 2183–2187.

DOI: 10.1364/AO.36.002183

Google Scholar