Threshold Voltage Adjustment on 4H-SiC MOSFETs Using P-Doped Polysilicon as a Gate Material

Article Preview

Abstract:

To scale digital circuits, symmetric threshold voltages (Vth) for n-type transistors (NMOS) and p-type transistors (PMOS) are important. One step towards this in silicon carbide (SiC) is selecting a p-doped polysilicon (pPolySi). This implementation has been shown in this work with Vth being evaluated by five different methods. Furthermore, operating temperatures up to 500 °C and their impact on Vth were investigated. It has been successfully demonstrated that elevated temperature shifts Vth of both transistor types towards 0 V, whereas changing the gate electrode from n-doped PolySi (nPolySi) to pPolySi shifts Vth of both transistor types to more positive values. Both effects are complementary for the PMOS, reaching Vth below 4 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology, John Wiley & Sons Singapore Pte. Ltd, Singapore, 2014.

Google Scholar

[2] C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of high temperature power electronics, Materials Science and Engineering: B 176 (2011) 283–288.

DOI: 10.1016/j.mseb.2010.10.003

Google Scholar

[3] A. Rahman, A.M. Francis, S. Ahmed, S.K. Akula, J. Holmes, A. Mantooth, High-Temperature Voltage and Current References in Silicon Carbide CMOS, IEEE Trans. Electron Devices 63 (2016) 2455–2461.

DOI: 10.1109/ted.2016.2550580

Google Scholar

[4] M.K. Kim, S. Chae, C.W. Kim, J.-w. Lee, S. Tiwari, A Comparison of N+ type and P+ type Polysilicon Gate in High Speed Non-Volatile Memories, MRS Proc. 997 (2007).

DOI: 10.1557/proc-0997-i03-12

Google Scholar

[5] K. Adachi, C.M. Johnson, K. Arai, K. Fukuda, S. Harada, T. Shinohe, TCAD Optimisation of 4H-SiC Channel-Doped MOSFET with P-Polysilicon Gate, MSF 389-393 (2002) 1085–1088.

DOI: 10.4028/www.scientific.net/msf.389-393.1085

Google Scholar

[6] M. Albrecht, T. Erlbacher, A. Bauer, L. Frey, Improving 5V Digital 4H-SiC CMOS ICs for Operating at 400°C Using PMOS Channel Implantation, MSF 963 (2019) 827–831.

DOI: 10.4028/www.scientific.net/msf.963.827

Google Scholar

[7] C.-L. Hung, B.-Y. Tsui, T.-K. Tsai, L.-J. Lin, Y.-X. Wen, Design, Process, and Characterization of Complementary Metal–Oxide–Semiconductor Circuits and Six-Transistor Static Random-Access Memory in 4H-SiC, ECS J. Solid State Sci. Technol. 11 (2022) 45001.

DOI: 10.1149/2162-8777/ac6119

Google Scholar

[8] A. May, M. Rommel, S. Beuer, T. Erlbacher, Via Size-Dependent Properties of TiAl Ohmic Contacts on 4H-SiC, MSF 1062 (2022) 185–189.

DOI: 10.4028/p-36s1w4

Google Scholar

[9] A. Ortiz-Conde, F.J. Garcı́a Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, Y. Yue, A review of recent MOSFET threshold voltage extraction methods, Microelectronics Reliability 42 (2002) 583–596.

DOI: 10.1016/s0026-2714(02)00027-6

Google Scholar

[10] F.M. Klaassen, W. Hes, On the temperature coefficient of the MOSFET threshold voltage, Solid-State Electronics 29 (1986) 787–789.

DOI: 10.1016/0038-1101(86)90180-2

Google Scholar