Optimizing PECVD a-SiC:H Films for Neural Interface Passivation

Article Preview

Abstract:

This work aims to optimize Plasma-Enhanced Chemical Vapour Deposition (PECVD) amorphous hydrogenated silicon carbide (a-SiC:H) as a conformal passivation layer for invasive microelectrode array (MEA) neural interface applications. By carefully tuning the PECVD deposition parameters, the composition, structure, electrical, and mechanical properties of the films can be optimized for high resistivity, low stress, and great resistance to chemical attack. This optimization will eventually allow a-SiC:H to be used as an ideal insulation, passivation and protection layer for thin and biocompatible all-SiC neural interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] N. Hatsopoulos, J. Donoghue. The Science of Neural Interface Systems. Annual review of neuroscience. 32 (2009) 249-66.

Google Scholar

[2] N. H. Lovell, J. W. Morley, S. C. Chen, L. E. Hallum and G. J. Suaning, Biological–Machine Systems Integration: Engineering the Neural Interface. Proceedings of the IEEE, vol. 98 (2010) 3, 418-431.

DOI: 10.1109/jproc.2009.2039030

Google Scholar

[3] C.H. Chiang, S.M. Won, A.L. Orsborn, K.J. Yu, M. Trumpis, G. Bent, C. Wang, Y. Xue, S. Min, V. Woods, C. Yu, B.H. Kim, S.B. Kim, R. Huq, J. Li, K.J. Seo, F. Vitale, A. Richardson, H. Fang, Y. Huang, K. Shepard, B. Pesaran, J.A. Rogers, J. Viventi. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci Transl Med. 2020 Apr 8;12(538):eaay4682. doi: 10.1126/scitranslmed.aay4682. PMID: 32269166; PMCID: PMC7478122.

DOI: 10.1126/scitranslmed.aay4682

Google Scholar

[4] J.M. Hsu, L. Rieth, R.A. Normann, P. Tathireddy, F. Solzbacher. Encapsulation of an integrated neural interface device with Parylene C. IEEE Trans Biomed Eng. 2009 Jan;56(1):23-9. doi: 10.1109/TBME.2008.2002155. PMID: 19224715.

DOI: 10.1109/tbme.2008.2002155

Google Scholar

[5] F. Deku, Y. Cohen, A. Joshi-Imre, A. Kanneganti, T.J. Gardner, S.F. Cogan. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording. J Neural Eng. (2018) Feb; 15(1):016007.

DOI: 10.1088/1741-2552/aa8f8b

Google Scholar

[6] C. Feng & C. Frewin & M. R. Tanjil & R. Everly & J. Bieber & A. Kumar & M.C. Wang & S.E. Saddow. A Flexible a-SiC-Based Neural Interface Utilizing Pyrolyzed-Photoresist Film (C) Active Sites. Micromachines. 12. (2021).

DOI: 10.3390/mi12070821

Google Scholar

[7] M.Avram, A.Avram, A. Bragaru, B.Chen, D. Poenar, C. Iliescu. Low stress PECVD amorphous silicon carbide for MEMS applications. Semic. Conf. CAS 2010 Int. (2010). 01. 239-242.

DOI: 10.1109/smicnd.2010.5650647

Google Scholar

[8] S. Kwon, Y. Park, W. Ban, C. Youn, S. Lee, J. Yang, D. Jung, T. Choi. Effect of plasma power on properties of hydrogenated amorphous silicon carbide hardmask films deposited by PECVD. Vacuum (2020) Apr;174.

DOI: 10.1016/j.vacuum.2020.109187

Google Scholar

[9] Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata, S. Tsuboi. "Raman spectra of amorphous SiC." Solid State Communications 48 (1983): 1071-1075.

DOI: 10.1016/0038-1098(83)90834-7

Google Scholar

[10] J.M. Hsu, P. Tathireddy, L. Rieth, A.R. Normann, F. Solzbacher. Characterization of a-SiC(x):H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Films. (2007) Nov 1;516(1):34-41.

DOI: 10.1016/j.tsf.2007.04.050

Google Scholar

[11] Diaz-Botia. "Silicon carbide technologies for interfacing with the nervous system" PhD thesis, University of California, Berkeley. (2017).

Google Scholar

[12] Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata, S. Tsuboi, Raman spectra of amorphous SiC, Solid State Communications, Volume 48, Issue 12, 1983, Pages 1071-1075, ISSN 0038-1098.

DOI: 10.1016/0038-1098(83)90834-7

Google Scholar

[13] H. Wieder, M. Cardona, C.R. Guarnieri. Vibrational Spectrum of Hydrogenated Amorphous Si-C Films. Phys. Stat. Sol. (b) (1979) 92, 99

DOI: 10.1002/pssb.2220920112

Google Scholar

[14] W. Daves, A. Krauß, N. Behnel, V. Häublein, A. Bauer, L. Frey. Amorphous silicon carbide thin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films. 519. (2011). 5892-5898.

DOI: 10.1016/j.tsf.2011.02.089

Google Scholar

[15] S. King, J. Bielefeld, G. Xu, W. Lanford, Y. Matsuda, R. Dauskardt, N. Kim, D. Hondongwa, L. Olasov, B. Daly, G. Stan, M. Liu, D. Dutta, D. Gidley. Influence of network bond percolation on the thermal, mechanical, electrical and optical properties of high and low-k a-SiC:H thin films. Journal of Non-Crystalline Solids. 379. (2013). 67.

DOI: 10.1016/j.jnoncrysol.2013.07.028

Google Scholar

[16] F. Deku, S. Mohammed, A. Joshi-Imre, J. Maeng, V. Danda, T.J. Gardner, S.F. Cogan. Effect of oxidation on intrinsic residual stress in amorphous silicon carbide films. J Biomed Mater Res B Part B. (2018). 2018:9999:9999:1–8.

DOI: 10.1002/jbm.b.34258

Google Scholar

[17] Stefan Janz, "Amorphous Silicon Carbide for Photovoltaic Applications", PhD Dissertation Un.Konstanz Germany, (2006)

Google Scholar