Evaluation of the Alkali-Aggregate Reaction Mitigation Potential of Alkali-Activated Fly Ash-Based Matrices Containing Different Reactive Aggregates

Article Preview

Abstract:

The present study evaluated the use of alkali-activated fly ash-based matrices containing different reactive aggregates (quartz, basalt and limestone) to mitigate the alkali-aggregate reaction (AAR). The fly ash activation was performed with sodium hydroxide (NaOH) solution, with a molar ratio (Na2O/SiO2) of 0.4. Reference matrices were prepared using Portland cement type V (ARI). All composites were prepared with a mass ratio of 1:2.25:0.47 (binder: aggregate: water/agglomerant ratio). The petrographic analyses allowed the identification of potentially reactive phases in the three studied aggregates. From the results, it was verified that the Portland cement-based matrices with basalt and quartz aggregates confirmed the reactivity of these aggregates. On the other hand, the reactivity of the same aggregates was not manifested in the CVAA-based matrices, classifying the basalt and quartz aggregates as innocuous in the alkali-activated matrix. Therefore, CVAA-based matrices mitigated AAR when using reactive basalt and quartz aggregates. However, the limestone aggregate did not show reactivity in the matrices studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-128

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. C. Jacoby; F. Pelisser. Pozzolanic effect of porcelain polishing residue in Portland cement. Journal of Cleaner Production. v. 100, pp.84-88, ago. 2015.J.

DOI: 10.1016/j.jclepro.2015.03.096

Google Scholar

[2] Z. Shi; A. Leemann; D. Rentsch; B. Lothenbach. Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Materials & Design, 108562, (2020).

DOI: 10.1016/j.matdes.2020.108562

Google Scholar

[3] A. C. Ferche; B. Gautam; F. Habibi; D. K. Panesar; S. A. Sheikh; F. J. Vecchio; N. Orbovic. Material, structural and modelling aspects of alkali aggregate reaction in concrete. Nuclear Engineering and Design, v. 351, p.87–93, (2019).

DOI: 10.1016/j.nucengdes.2019.05.019

Google Scholar

[4] A. Leemann. Raman microscopy of alkali-silica reaction (ASR) products formed in concrete. Cement and Concrete Research, v. 102, (2017).

DOI: 10.1016/j.cemconres.2017.08.014

Google Scholar

[5] H. Allahyari; A. Heidarpour; A. Shayan; V. P. Nguyen. A robust time-dependent model of alkali-silica reaction at different temperatures. Cement and Concrete Composites, v. 106, 103460, (2020).

DOI: 10.1016/j.cemconcomp.2019.103460

Google Scholar

[6] S. V. A. Barros; J. E. A. Marciano; H. C. Ferreira; R. R. Menezes; G. A. Neves. Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior. Construction and Building Materials, v. 116, (2016).

DOI: 10.1016/j.conbuildmat.2016.05.079

Google Scholar

[7] T. Kubat; R. Al-Mahaidi; A. Shayan. CFRP confinement of circular concrete columns affected by alkali-aggregate reaction. Construction and Building Materials, v. 118, (2016).

DOI: 10.1016/j.conbuildmat.2016.04.123

Google Scholar

[8] P. Jianwen; F. Yuntian; X. Yanjie; J. Feng; Z. Chuhan; Z. Bingyin. Chemo-damage modeling and cracking analysis of AAR-affected concrete dams. Science China – Technological Sciences, v. 56, (2013).

DOI: 10.1007/s11431-013-5187-4

Google Scholar

[9] W. Wang; T. Noguchi. Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, v. 252, (2020).

DOI: 10.1016/j.conbuildmat.2020.119105

Google Scholar

[10] C. Shi; Z. Shi; X. Hu; R. Zhao; L. Chong. A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Materials and Structures, v. 48, (2015).

DOI: 10.1617/s11527-014-0505-2

Google Scholar

[11] P. Alaejos; V. Lanza. Influence of equivalent reactive quartz content on expansion due to alkali silica reaction. Cement and Concrete Research, v. 42, (2012).

DOI: 10.1016/j.cemconres.2011.08.006

Google Scholar

[12] D. W. Hobbs. Alkali-silica reaction in concrete. London: Thomas Telford, (1988).

Google Scholar

[13] K. F. Portella; M. M. Mazur; M. O. G. P. Bragança; E. M. Silva; S. A. Pianaro; B. E. Ribeiro; L. Lagoeiro; E. Alberti. Pulsed DC plasma as a tool for the generation of nanomaterials that mitigate the alkali-aggregate reaction in Portland cement concretes. Construction and Building Materials, v. 151, (2017).

DOI: 10.1016/j.conbuildmat.2017.06.051

Google Scholar

[14] D. Nagrockienė; A. Rutkauskas. The effect of fly ash additive on the resistance of concrete to alkali silica reaction. Construction and Building Materials, v. 201, p.599–609, (2019).

DOI: 10.1016/j.conbuildmat.2018.12.225

Google Scholar

[15] Z. Shi; C. Shi; J. Zhang; Z. Wan; Z. Zuhua; Z. Ou. Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cement and Concrete Research, v. 108, (2018).

DOI: 10.1016/j.cemconres.2018.03.002

Google Scholar

[16] American Society for Testing and Materials. ASTM C 1260: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), ASTM International, West Conshohocken, PA, (2021).

DOI: 10.1520/c1260-05a

Google Scholar

[17] P. Krivenko; R. Drochytka; A. Gelevera; E. Kavalerova. Mechanism of preventing the alkali–aggregate reaction in alkali activated cement concretes. Cement & Concrete Composites, v. 45, (2014).

DOI: 10.1016/j.cemconcomp.2013.10.003

Google Scholar

[18] American Society for Testing and Materials. ASTM C 150: Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, (2020).

Google Scholar

[19] Associação Brasileira de Normas Técnicas. NBR 15577-4: Agregados - Reatividade álcali-agregado - Parte 4: Determinação da expansão em barras de argamassa pelo método acelerado. Rio de Janeiro, (2018).

DOI: 10.4322/cbpat.2022.024

Google Scholar

[20] Associação Brasileira de Normas Técnicas. NBR NM 45: Agregados – Determinação da massa unitária e do volume de vazios. Rio de Janeiro, (2006).

Google Scholar

[21] Associação Brasileira de Normas Técnicas. NBR NM 52: Agregado miúdo – Determinação da massa específica e massa específica aparente. Rio de Janeiro, (2009).

DOI: 10.1590/s1517-707620210003.13025

Google Scholar

[22] Associação Brasileira de Normas Técnicas. NBR NM 248: Agregados - Determinação da composição granulométrica. Rio de Janeiro, (2003).

Google Scholar

[23] Associação Brasileira de Normas Técnicas. NBR 15577-3: Agregados - Reatividade álcali-agregado - Parte 3: Análise petrográfica para verificação da potencialidade reativa de agregados em presença de álcalis do concreto. Rio de Janeiro, (2018).

DOI: 10.29327/111013.61-1

Google Scholar

[24] A. S. Vargas; D. C. C. Dal Molin; A. C. F. Vilela; F. J. Silva; B. Pavão; H. Veit. The effects of Na2O/SiO2 molar ratio, curing temperature and age on compression strength, morphology, and microstructure of alkali-activated fly ash samples. Cement & Concrete Composites, v. 33, pp.653-660, (2011).

DOI: 10.1016/j.cemconcomp.2011.03.006

Google Scholar

[25] F. Tiecher; D. C. C. Dal Molin; M. B. Gomes; N. P. Hasparyk; P. J. M. Monteiro. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction. Cement & Concrete Composites, v. 34, pp.1130-1140, (2012).

DOI: 10.1016/j.cemconcomp.2012.07.009

Google Scholar

[26] F. Tiecher; S. D. Venquiaruto; L. B. Silva; D. C. C. D. Molin; GOMES, M. B. The reactivity of the aggregates from southern region of Brazil. Revista IBRACON de Materiais (Cessou em 2007. Fundiu-se com ISSN 1809-1121 Revista IBRACON de Estruturas e ISSN 1983-4195 Revista IBRACON de Estrutura, v. 3, pp.73-81, (2007).

DOI: 10.1590/s1983-41952021000600013

Google Scholar

[27] A. Leemann; B. Munch. The addition of caesium to concrete with alkali-silica reaction: Implications on product identification and recognition of the reaction sequence. Cement and Concrete Research, v. 120, (2019).

DOI: 10.1016/j.cemconres.2019.03.016

Google Scholar

[28] J. F. A. Silveira; A. J. C. T. Cavalcanti; N. P. Hasparyk; A. N. M. Lopes. Investigação da reatividade álcali agregado e a confiança dos métodos acelerados. In Congresso Brasileiro de Concreto, v. 44. Anais. São Paulo: IBRACON, (2002).

Google Scholar

[29] J. M. M. Fonseca; V. K. B. Souza; D. G. C. Silva; D. L. Silva; E. C. B. Monteiro. Alkali-Aggregate Reaction: Definition, Influence and Control. Engineering and Applied Sciences, n. 3, (2018).

Google Scholar

[30] Associação Brasileira de Normas Técnicas. NBR 15577-1: Agregados - Reatividade álcali-agregado - Parte 1: Guia para avaliação da reatividade potencial e medidas preventivas para uso de agregados em concreto. Rio de Janeiro, (2018).

DOI: 10.1590/s1517-707620180003.0509

Google Scholar

[31] A. Teramoto; M. Watanabe; R. Murakami; T. Ohkubo. Visualization of internal crack growth due to alkali–silica reaction using digital image correlation. Construction and Building Materials, v. 190, (2018).

DOI: 10.1016/j.conbuildmat.2018.09.168

Google Scholar

[32] A. J. Maas; J. H. Ideker; M. C. G. Juenger. Alkali silica reactivity of agglomerated silica fume. Cement and Concrete Research, v. 37, (2007).

DOI: 10.1016/j.cemconres.2006.10.011

Google Scholar

[33] D. V. Ribeiro; A. M. S. Silva; J. A. Labrincha; M. R. Morelli. Estudo das reações álcalis-sílica associadas ao uso da lama vermelha em argamassas colantes e de revestimento. Revista Cerâmica, v. 58, (2012).

DOI: 10.1590/s0366-69132012000100015

Google Scholar

[34] F. M. Pereira; P. C. P. Neves; D. M. Lenz; J. C. K. Verney. Avaliação da reatividade potencial de rochas utilizadas como agregados na construção civil no estado do Rio Grande do Sul. Revista Matéria, v. 23, (2018).

DOI: 10.1590/s1517-707620180003.0509

Google Scholar