[1]
F. M. Kilinckale, G. G. Doǧan. Performance of concretes produced with superplasticizer, Journal of Applied Polymer Science. 103 (2010) 3214-3219.
Google Scholar
[2]
M. Bing, M. Ming, X. Shen, X. Li, X. Wu. Compatibility between a polycarboxylate superplasticizer and the belite-rich sulfoaluminate cement: Setting time and the hydration properties, Construction and Building Materials. 51(2014) 47-54.
DOI: 10.1016/j.conbuildmat.2013.10.028
Google Scholar
[3]
E. Tkaczewska. Effect of the superplasticizer type on the properties of the fly ash blended cement, Construction and Building Materials. 70(2014) 388–393.
DOI: 10.1016/j.conbuildmat.2014.07.096
Google Scholar
[4]
Y. He, X. Zhang, R. D. Hooton. Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste, Construction and Building Materials.132(2017)112-123.
DOI: 10.1016/j.conbuildmat.2016.11.122
Google Scholar
[5]
H. Zhao, M. Deng, T. Mingshu. Effect of the molecular structure of monocyclic aromatic polymer on the application properties of concrete, Polymer Journal. 43(2011)859-865.
DOI: 10.1038/pj.2011.72
Google Scholar
[6]
F. Winnefeld, S. Becker, J. Pakusch, T. Götz. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems, Cement and Concrete Composites. 29 (2007)251-262.
DOI: 10.1016/j.cemconcomp.2006.12.006
Google Scholar
[7]
W. Fan, F. Stoffelbach, J. Rieger, L. Regnaud, A. Vichot, B. Bresson, N. Lequeux. A new class of organosilane-modified polycarboxylate superplasticizers with low sulfate sensitivity, Cement and Concrete Research. 42(2012)166-172.
DOI: 10.1016/j.cemconres.2011.09.006
Google Scholar
[8]
W. Guo, N. Sun, J. Qin, J. Zhang, M. Pei, Y. Wang, S. Wang. Synthesis and properties of an amphoteric polycarboxylic acid-based superplasticizer used in sulfoaluminate cement, Journal of Applied Polymer Science. 125 (2012)283-290.
DOI: 10.1002/app.35565
Google Scholar
[9]
J.Sun, X. Yin, B. Cui, C. Zhao, G. Miao. Synthesis and sustained release mechanism of slow release polycarboxylate superplasticizer, IOP Conference Series: Earth and Environmental Science. 440(2020)022054.
DOI: 10.1088/1755-1315/440/2/022054
Google Scholar
[10]
Y.Fang, X. Wang, L. Jia, C. Liu, Z. Zhao, C. Chen, Y. Zhang. Synergistic effect of polycarboxylate superplasticizer and silica fume on early properties of early high strength grouting material for semi-flexible pavement, Construction and Building Materials. 319(2022)126065.
DOI: 10.1016/j.conbuildmat.2021.126065
Google Scholar
[11]
Y. Fang, Y. Ke, H. Lai, Z. Wang, L. Zhong, X. Ma. Study on the synthesis, properties and characterization of EPEG slump retaining typed polycarboxylate superplasticizer, Key Engineering Materials. 905(2022).
DOI: 10.4028/www.scientific.net/kem.905.325
Google Scholar
[12]
E. Janowska-Renkas. The effect of superplasticizers' chemical structure on their efficiency in cement pastes, Construction and Building Materials. 38(2013)1204-1210.
DOI: 10.1016/j.conbuildmat.2012.09.032
Google Scholar
[13]
R. Fan, S. Li, C. Wang, D. Zhang, N. Xu. Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste, Construction and Building Materials.105 (2016)545-553.
DOI: 10.1016/j.conbuildmat.2015.12.178
Google Scholar
[14]
S. Lv, H. Ju, C. Qiu, Y. Ma, Q. Zhou. Effects of connection mode between carboxyl groups and main chains on polycarboxylate superplasticizer properties, Journal of Applied Polymer Science.128(2013)3925-3932.
DOI: 10.1002/app.38608
Google Scholar
[15]
B. Ma, B. Gu, X. Li, H. Tan, Y. Guo. Adsorbing behavior of polycarboxylate superplasticizer in the presence of ester group in side chain, Journal of Dispersion Science and Technology. (2017).
DOI: 10.1080/01932691.2016.1193814
Google Scholar
[16]
K. Yamada, T. Takahashi, S. Hanehara, M. Matsuhisa. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer, Cement and Concrete Research. 30(2000)197-207.
DOI: 10.1016/s0008-8846(99)00230-6
Google Scholar
[17]
E. Sakai, D. Masaki Dispersionmechanism of comb-type superplasticizers containing grafted polyethylene oxides, International Symposium on Cement and Concrete. (2002).
Google Scholar
[18]
K.Yoshioka, E.Sakai, M. Daimon, A. Kitahara. Role of steric hindrance in the performance of superplasticizers for concrete, Journal of the American Ceramic Society. 80(1997)2667-2672
DOI: 10.1111/j.1151-2916.1997.tb03169.x
Google Scholar
[19]
S.Li, H. Pang, J. Zhang,Y. Meng, J. Huang, X. Li, B. Liao. Synthesis and performance of a novel amphoteric polycarboxylate superplasticizer with hydrolysable ester group, Colloids and Surfaces, A. Physicochemical and Engineering Aspects. 564(2019).
DOI: 10.1016/j.colsurfa.2018.11.043
Google Scholar
[20]
R. Li, W. Eisenreich, L. Lei,J. Plank. Low carbon alkali-activated slag binder and its interaction with polycarboxylate superplasticizer: Importance of microstructural design of the PCEs, ACS Sustainable Chemical and Engineering 10(2022)17241-17251.
DOI: 10.1021/acssuschemeng.2c05430
Google Scholar
[21]
H.Qi, B. Ma, H.Tan, Y. Su, Z. Luo. Polycarboxylate superplasticizer modified by phosphate ester in side chain and its basic properties in gypsum plaster, Construction and Building Materials. 271(2020)121566.
DOI: 10.1016/j.conbuildmat.2020.121566
Google Scholar
[22]
J. Liu, Y. Yang, Q. Zhang, X. Shu, Q. Ran, J. Liu. Effect of molecular weight of slow-release Polycarboxylate Superplasticizer on the properties of cementitious system, Advances in Cement Research. 30(2018)285-292.
DOI: 10.1680/jadcr.17.00069
Google Scholar
[23]
M. Macijauskas, G. Skripkiūnas. The Influence of Superplasticizers Based on Modified Acrylic Polymer and Polycarboxylate Ester on the Plasticizing Effect of Cement Paste, Materials Science Forum. (2017).
DOI: 10.4028/www.scientific.net/msf.904.167
Google Scholar
[24]
Y. He, X. Zhang, Y. Wang, Y.Kong, T. Ji, L. Shui, X. Wang, H. Wang. Effect of PCEs with different functional groups on the performance of cement Paste, Journal of Wuhan University of Technology-Materials. 34(2019)1163-1169.
DOI: 10.1007/s11595-019-2173-0
Google Scholar
[25]
H. Huang, C.H. Qian, F. Zhao, J. Qu, J. Guo, M.Danzinger. Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete, Construction and Building Materials. 110(2016)293-299.
DOI: 10.1016/j.conbuildmat.2016.02.041
Google Scholar
[26]
A. Zingg, F. Winnefeld, L. Holzer, J. Pakusch, S. Becker, R. Figi, L. Gauckler. Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts, Cement and Concrete Composites. 31 (2009) 153–162.
DOI: 10.1016/j.cemconcomp.2009.01.005
Google Scholar
[27]
X. Liu, Z. Wang, J. Zhu, Y. Zheng, S. Cui, M. Lan, H. Li. Synthesis, characterization and performance of a polycarboxylate superplasticizer with amide structure, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 448(2014)119-129.
DOI: 10.1016/j.colsurfa.2014.02.022
Google Scholar
[28]
A. Kauppi, K. M. Andersson, M. L. Bergstr. Probing the effect of superplasticizer adsorption on the surface forces using the colloidal probe AFM technique, Cement and Concrete Research. 35(2005)133-140.
DOI: 10.1016/j.cemconres.2004.07.008
Google Scholar
[29]
Y. Li, H. Guo, Y. Zhang, J. Zheng, Z. Li, C.H. Yang, M. Lu. Study on dispersion, adsorption and flow retaining behaviors of cement mortars with TPEG-type polyether kind polycarboxylate superplasticizers, Construction and Building Materials. 64(2014)324-332.
DOI: 10.1016/j.conbuildmat.2014.04.050
Google Scholar
[30]
L. Huang, W. Song, H. Li, H. Zhang, Z.H. Yang. Effects of aphthitalite on the formation of clinker minerals and hydration properties, Construction and Building Materials. 183(2018)275-282.
DOI: 10.1016/j.conbuildmat.2018.06.082
Google Scholar
[31]
Y. Tao, W. Zhang, N. Li, F. Wang, S. Hu. Predicting hydration reactivity of Cu-doped clinker crystals by capturing electronic structure modification, ACS Sustainable Chemistry and Engineering. 7(2019) 6412-6421.
DOI: 10.1021/acssuschemeng.9b00327
Google Scholar
[32]
W. Meng, P. Lunkad, A. Kumar, K. Khayat. Influence of silica fume and PCE dispersant on hydration mechanisms of cement, The Journal of Physical Chemistry C. 120(2016) 26814- 26823.
DOI: 10.1021/acs.jpcc.6b08121
Google Scholar
[33]
C. Huang, Z. Cheng, J. Zhao, Y. Wang, J. Pang. The influence of water reducing agents on early hydration property of ferrite aluminate cement paste, Crystals. 11(2021)731.
DOI: 10.3390/cryst11070731
Google Scholar
[34]
G.D. Schutter. Hydration and temperature development of concrete made with blast furnace slag cement, Cement and Concrete Research. 29(1999)143-149.
DOI: 10.1016/s0008-8846(98)00229-4
Google Scholar
[35]
J. Plank, C. Winter. Competitive adsorption between superplasticizer and retarder molecules on mineral binder surface, Cement and Concrete Research. 38(2008)599-605.
DOI: 10.1016/j.cemconres.2007.12.003
Google Scholar
[36]
J.Roncero, S. Valls, R. Gettu. Study of the influence of superplasticizers on the hydration of cement paste using nuclear magnetic resonance and X-ray diffraction techniques, Cement and Concrete Research.32(2002)103-108.
DOI: 10.1016/s0008-8846(01)00636-6
Google Scholar
[37]
L.E. Zapata, G. Portela, O.M. Suárez, O. Carrasquillo. Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions, Construction and Building Materials. 41(2013)708-716.
DOI: 10.1016/j.conbuildmat.2012.12.025
Google Scholar