Determination of Elastic Constants of Cross-Laminated Bamboo (CLB) through Non-Destructive Testing

Article Preview

Abstract:

The aim of this work is the evaluation by non-destructive impulse excitation tests, the modulus of elasticity (E) and the transversal deformation modulus (G) of cross laminated bamboo (CLB). Tests were performed on twenty-three CLB specimens measuring: 12 mm (height), 40 mm (width) and 12 mm (length). Twelve specimens have two lamellas with fibers at 0 °, longitudinal direction, and one layer with fibers at 90 °, normal direction (N) and the other eleven specimens have two layers in the normal direction and one in the longitudinal direction (L). The tests were performed using the Sonelastic apparatus indicated for the estimation of the dynamic modulus of elasticity and the damping of materials by the impulse excitation technique. A software attached to the apparatus analyzes the acoustic wave generated, and from it, the dynamic modulus of elasticity is determined. In order to verify the significance of this estimation, semi-destructive, three-point bending tests were performed in a universal test machine, determining E and G. It was concluded that the estimation of the modulus of elasticity is very significant when compared with the semi-destructive tests, and this method can be used to estimate the elasticity modulus of the CLB with high precision (R2 = 99% and p-value <0.001). Modulus of elasticity in the longitudinal direction were five times larger than those in the normal direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-138

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li, M.K. Xia, J.J. Shi, R. Wang, Shear properties of composite cross-laminated bamboo panels, European Journal of Wood and Wood Products. 80(2022) 635–646.

DOI: 10.1007/s00107-022-01786-7

Google Scholar

[2] Q. Lv, W. Wang, Y. Liu, Flexural performance of cross-laminated bamboo (CLB) slabs and CFRP grid composite CLB slabs, Adv Civ Eng. 9 (2019) 1–17.

DOI: 10.1155/2019/6980782

Google Scholar

[3] Z. Tanga, B. Shana, W.G. Li, Q.Peng, Y. Xi, Structural behavior of glubam I-joists, Construction and Building Materials. 224 (2019) 292-305.

DOI: 10.1016/j.conbuildmat.2019.07.082

Google Scholar

[4] M. Mahdavi, P.L. Clouston, S.R. Arwade, Development of laminated bamboo lumber: Review of processing, performance, and economical considerations, J. Mater. Civil Eng. 23 (7), (2011) 1036-1042.

DOI: 10.1061/(asce)mt.1943-5533.0000253

Google Scholar

[5] E.V.M. Carrasco, M.A. Smits, R.C. Alves, V.D. Pizzol, A.L.C. Oliveira, J.N.R. Mantilla, GluBam beams: Influence of the roughness of the bamboo laminas on the shear stress and the sliding modulus of bonded joint, Biosystems Engineering. 203 (2021) 98 e 108.

DOI: 10.1016/j.biosystemseng.2020.12.016

Google Scholar

[6] P. Wei, B.J. Wang, L. Wang, Y. Wang, G. Yang, J. Liu, An exploratory study of composite cross-laminated timber (CCLT) made from bamboo and hemlock-fir mix, Bio-resources. 14 (1) (2019) 2160–2170.

DOI: 10.15376/biores.14.1.2160-2170

Google Scholar

[7] B. Sharma, A. Gatóo, M. H. Ramage, Effect of processing methods on the mechanical properties of engineered bamboo, Constr. Build. Mater. 83 (2015) 95–101.

DOI: 10.1016/j.conbuildmat.2015.02.048

Google Scholar

[8] H. T. Li, Q. S. Zhang, G. Wu, Stress-strain model under compression for side pressure laminated bamboo, J. Southeast Univ. (Nat. Sci.) 45 (6), (2015) 1130–1134.

Google Scholar

[9] Q. Li, Z. Wang, Z. Liang, L. Li, M. Gong, J. Zhou, Shear properties of hybrid CLT fabricated with lumber and OSB, Constr Build Mater. 261 (2020) 120504.

DOI: 10.1016/j.conbuildmat.2020.120504

Google Scholar

[10] H. T. Li, J. W. Su, Q. S. Zhang, G. Chen, Experimental study on mechanical performance of side pressure laminated bamboo beam, J. Build. Struct. 36(3), (2015) 121–126.

Google Scholar

[11] Z. Li, G.S. Yang, Q. Zhou, B. Shan, Y. Xiao, Bending performance of glubam beams made with different processes, Adv. Struct. Eng. 22 (2) (2018) 535–546.

DOI: 10.1177/1369433218794327

Google Scholar

[12] R. Manikandan, T. R. Manimaran, W. R. Babu, M. Samuel, Fabrication of bamboo fibre reinforced polymer matrix composites.(Report) Advances in Natural and Applied Sciences. 10(4) (2016) 145-151.

Google Scholar

[13] T. Haiyan, Damage of bamboo and wooden materials based on linear elastic fracture mechanics in garden design, Frattura ed Integritá Strutturale. 35 (2016) 472-480.

DOI: 10.3221/igf-esis.35.53

Google Scholar

[14] D.F. Llana, V. Gonzalez-Alegre, M. Portela, G. Iniguez-Gonzalez, Cross Laminated Timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation, Construction and Building Materials. 339 (2022) 127635.

DOI: 10.1016/j.conbuildmat.2022.127635

Google Scholar

[15] V. BUCUR, Elastic constants for wood by an ultrasonic method. Wood Sci. Technol. 18 (1984) 255-265.

DOI: 10.1007/bf00353361

Google Scholar

[16] D. M. Stangerlin, J. C. Gonçalez, R. Gonçalves, E. J. Santini, L. Calegari, R. R. Melo, D. A. Gatto, Avaliação de tipos de ondas geradas por dois modelos de transdutores para determinação do módulo de elasticidade dinâmico, Floresta. 40(4), (2010) 691-700.

DOI: 10.5380/rf.v40i4.20320

Google Scholar

[17] C.S. Mvolo, J.D. Stewart, A. Kouba, Comparison between static modulus of elasticity, non-destructive testing modulus of elasticity and stress-wave speed in white spruce and lodgepole pine wood, Wood Material Science & Engineering. 9 (2021) 1-11.

DOI: 10.1080/17480272.2021.1871949

Google Scholar

[18] N. Yang, Z.C. Wang, Influence of number and position of measuring points on the nondestructive testing method to predict the flexural modulus of aged wood, Holzforschung. 76 (5) (2022) 421-429.

DOI: 10.1515/hf-2021-0065

Google Scholar

[19] J. Bodig, J. R. Godmann, Prediction of elastic parameters for wood, Wood Sci. 5 (1972) 249-264.

Google Scholar

[20] C. Osuna-Sequera, D.F. Llana, M. Esteban, F. Arriaga, Improving density estimation in large cross-section timber from existing structures optimizing the number of non-destructive measurements, Construction and Building Materials. 211 (2019) 199-206

DOI: 10.1016/j.conbuildmat.2019.03.144

Google Scholar

[21] R.C. Alves, J.N.R. Mantilla, C.F. Bremer, E.V.M. Carrasco, Application of Acoustic Tomography and Ultrasonic Waves to Estimate Stiffness Constants of Muiracatiara Brazilian Wood. Bioresources 10 (2014) 1845-1856.

DOI: 10.15376/biores.10.1.1845-1856

Google Scholar

[22] V. BUCUR, Acoustics of wood. 2. ed., New York: CRC Press, 2006.

Google Scholar

[23] H. Fathi, S. Kazemirad, V. Nasir, Lamb wave propagation method for nondestructive characterization of the elastic properties of wood, Applied Acoustics. 171 (2021) 107565.

DOI: 10.1016/j.apacoust.2020.107565

Google Scholar

[24] V.D. Pizzol, J.N.R. Mantilla, E.V.M. Carrasco, Caracterização elástica de compensados de madeira utilizados e reutilizados em fôrmas através de excitação por impulso, Revista Matéria. 22, supl.1 (2018) 1-8.

DOI: 10.1590/s1517-707620170005.0264

Google Scholar

[25] ZB. Xin, DF. Ke, HJ. Zhang, YZ. Yu, FL. Liu, Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach, Construction and Building Materials. 341 (2022) 127855.

DOI: 10.1016/j.conbuildmat.2022.127855

Google Scholar

[26] R. Riggio, R.M. Anthony, F. Augelli, B. Kasal, T. Lechner, W. Muller, T. Tannert, In situ assessment of structural timber using non-destructive techniques, Materials and Structures. 47 (2014) 749–766.

DOI: 10.1617/s11527-013-0093-6

Google Scholar

[27] R. Gonçalves, A.T. Trinca, Elastic constants of wood determined by ultrasound using three geometries of specimens, Wood Sci Technol. 48 (2014) 269–287.

DOI: 10.1007/s00226-013-0598-8

Google Scholar

[28] A.H.A. Bakar, M.Legg, D. Konings, F. Alam, Ultrasonic guided wave measurement in a wooden rod using shear transducer arrays, Ultrasonics. 19 (2022) 106583.

DOI: 10.1016/j.ultras.2021.106583

Google Scholar

[29] C. Vázquez, R. Gonçalves, C. Bertoldo, V. Baño, A. Vega, J. Crespo, M. Guaita, Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods, Wood Sci Technol. 49(3), (2015) 325-331.

DOI: 10.1007/s00226-015-0719-7

Google Scholar

[30] E. V. M. Carrasco, C. B. Varga, M. F. Souza, J. N. R. Mantilla, Avaliação das características mecânicas da madeira por meio de excitação por impulso, Revista Matéria, 22, supl. 1 (2017) 1-12.

DOI: 10.1590/s1517-707620170005.0272

Google Scholar

[31] ASTM E1876, Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, American Society for Testing Materials (2021).

DOI: 10.1520/c1548-02r07

Google Scholar

[32] NBR 7190, Projeto de estruturas de madeira, Associação Brasileira De Normas Técnicas, Rio de janeiro, (2022).

Google Scholar

[33] S.P. Timoshenko, J.E. Gere, Mecânica dos sólidos. Trad. J. Rodrigues de Carvalho. Rio de Janeiro. Livros Técnicos e Científicos, 1983.

Google Scholar

[34] S.R. Cowper, The 5hear Coefficient in Timoshenko' s beam Theory, Journal of Applied Mechanics, ASME, 33(02), (1966) 335-340.

Google Scholar