[1]
Z. Li, M.K. Xia, J.J. Shi, R. Wang, Shear properties of composite cross-laminated bamboo panels, European Journal of Wood and Wood Products. 80(2022) 635–646.
DOI: 10.1007/s00107-022-01786-7
Google Scholar
[2]
Q. Lv, W. Wang, Y. Liu, Flexural performance of cross-laminated bamboo (CLB) slabs and CFRP grid composite CLB slabs, Adv Civ Eng. 9 (2019) 1–17.
DOI: 10.1155/2019/6980782
Google Scholar
[3]
Z. Tanga, B. Shana, W.G. Li, Q.Peng, Y. Xi, Structural behavior of glubam I-joists, Construction and Building Materials. 224 (2019) 292-305.
DOI: 10.1016/j.conbuildmat.2019.07.082
Google Scholar
[4]
M. Mahdavi, P.L. Clouston, S.R. Arwade, Development of laminated bamboo lumber: Review of processing, performance, and economical considerations, J. Mater. Civil Eng. 23 (7), (2011) 1036-1042.
DOI: 10.1061/(asce)mt.1943-5533.0000253
Google Scholar
[5]
E.V.M. Carrasco, M.A. Smits, R.C. Alves, V.D. Pizzol, A.L.C. Oliveira, J.N.R. Mantilla, GluBam beams: Influence of the roughness of the bamboo laminas on the shear stress and the sliding modulus of bonded joint, Biosystems Engineering. 203 (2021) 98 e 108.
DOI: 10.1016/j.biosystemseng.2020.12.016
Google Scholar
[6]
P. Wei, B.J. Wang, L. Wang, Y. Wang, G. Yang, J. Liu, An exploratory study of composite cross-laminated timber (CCLT) made from bamboo and hemlock-fir mix, Bio-resources. 14 (1) (2019) 2160–2170.
DOI: 10.15376/biores.14.1.2160-2170
Google Scholar
[7]
B. Sharma, A. Gatóo, M. H. Ramage, Effect of processing methods on the mechanical properties of engineered bamboo, Constr. Build. Mater. 83 (2015) 95–101.
DOI: 10.1016/j.conbuildmat.2015.02.048
Google Scholar
[8]
H. T. Li, Q. S. Zhang, G. Wu, Stress-strain model under compression for side pressure laminated bamboo, J. Southeast Univ. (Nat. Sci.) 45 (6), (2015) 1130–1134.
Google Scholar
[9]
Q. Li, Z. Wang, Z. Liang, L. Li, M. Gong, J. Zhou, Shear properties of hybrid CLT fabricated with lumber and OSB, Constr Build Mater. 261 (2020) 120504.
DOI: 10.1016/j.conbuildmat.2020.120504
Google Scholar
[10]
H. T. Li, J. W. Su, Q. S. Zhang, G. Chen, Experimental study on mechanical performance of side pressure laminated bamboo beam, J. Build. Struct. 36(3), (2015) 121–126.
Google Scholar
[11]
Z. Li, G.S. Yang, Q. Zhou, B. Shan, Y. Xiao, Bending performance of glubam beams made with different processes, Adv. Struct. Eng. 22 (2) (2018) 535–546.
DOI: 10.1177/1369433218794327
Google Scholar
[12]
R. Manikandan, T. R. Manimaran, W. R. Babu, M. Samuel, Fabrication of bamboo fibre reinforced polymer matrix composites.(Report) Advances in Natural and Applied Sciences. 10(4) (2016) 145-151.
Google Scholar
[13]
T. Haiyan, Damage of bamboo and wooden materials based on linear elastic fracture mechanics in garden design, Frattura ed Integritá Strutturale. 35 (2016) 472-480.
DOI: 10.3221/igf-esis.35.53
Google Scholar
[14]
D.F. Llana, V. Gonzalez-Alegre, M. Portela, G. Iniguez-Gonzalez, Cross Laminated Timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation, Construction and Building Materials. 339 (2022) 127635.
DOI: 10.1016/j.conbuildmat.2022.127635
Google Scholar
[15]
V. BUCUR, Elastic constants for wood by an ultrasonic method. Wood Sci. Technol. 18 (1984) 255-265.
DOI: 10.1007/bf00353361
Google Scholar
[16]
D. M. Stangerlin, J. C. Gonçalez, R. Gonçalves, E. J. Santini, L. Calegari, R. R. Melo, D. A. Gatto, Avaliação de tipos de ondas geradas por dois modelos de transdutores para determinação do módulo de elasticidade dinâmico, Floresta. 40(4), (2010) 691-700.
DOI: 10.5380/rf.v40i4.20320
Google Scholar
[17]
C.S. Mvolo, J.D. Stewart, A. Kouba, Comparison between static modulus of elasticity, non-destructive testing modulus of elasticity and stress-wave speed in white spruce and lodgepole pine wood, Wood Material Science & Engineering. 9 (2021) 1-11.
DOI: 10.1080/17480272.2021.1871949
Google Scholar
[18]
N. Yang, Z.C. Wang, Influence of number and position of measuring points on the nondestructive testing method to predict the flexural modulus of aged wood, Holzforschung. 76 (5) (2022) 421-429.
DOI: 10.1515/hf-2021-0065
Google Scholar
[19]
J. Bodig, J. R. Godmann, Prediction of elastic parameters for wood, Wood Sci. 5 (1972) 249-264.
Google Scholar
[20]
C. Osuna-Sequera, D.F. Llana, M. Esteban, F. Arriaga, Improving density estimation in large cross-section timber from existing structures optimizing the number of non-destructive measurements, Construction and Building Materials. 211 (2019) 199-206
DOI: 10.1016/j.conbuildmat.2019.03.144
Google Scholar
[21]
R.C. Alves, J.N.R. Mantilla, C.F. Bremer, E.V.M. Carrasco, Application of Acoustic Tomography and Ultrasonic Waves to Estimate Stiffness Constants of Muiracatiara Brazilian Wood. Bioresources 10 (2014) 1845-1856.
DOI: 10.15376/biores.10.1.1845-1856
Google Scholar
[22]
V. BUCUR, Acoustics of wood. 2. ed., New York: CRC Press, 2006.
Google Scholar
[23]
H. Fathi, S. Kazemirad, V. Nasir, Lamb wave propagation method for nondestructive characterization of the elastic properties of wood, Applied Acoustics. 171 (2021) 107565.
DOI: 10.1016/j.apacoust.2020.107565
Google Scholar
[24]
V.D. Pizzol, J.N.R. Mantilla, E.V.M. Carrasco, Caracterização elástica de compensados de madeira utilizados e reutilizados em fôrmas através de excitação por impulso, Revista Matéria. 22, supl.1 (2018) 1-8.
DOI: 10.1590/s1517-707620170005.0264
Google Scholar
[25]
ZB. Xin, DF. Ke, HJ. Zhang, YZ. Yu, FL. Liu, Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach, Construction and Building Materials. 341 (2022) 127855.
DOI: 10.1016/j.conbuildmat.2022.127855
Google Scholar
[26]
R. Riggio, R.M. Anthony, F. Augelli, B. Kasal, T. Lechner, W. Muller, T. Tannert, In situ assessment of structural timber using non-destructive techniques, Materials and Structures. 47 (2014) 749–766.
DOI: 10.1617/s11527-013-0093-6
Google Scholar
[27]
R. Gonçalves, A.T. Trinca, Elastic constants of wood determined by ultrasound using three geometries of specimens, Wood Sci Technol. 48 (2014) 269–287.
DOI: 10.1007/s00226-013-0598-8
Google Scholar
[28]
A.H.A. Bakar, M.Legg, D. Konings, F. Alam, Ultrasonic guided wave measurement in a wooden rod using shear transducer arrays, Ultrasonics. 19 (2022) 106583.
DOI: 10.1016/j.ultras.2021.106583
Google Scholar
[29]
C. Vázquez, R. Gonçalves, C. Bertoldo, V. Baño, A. Vega, J. Crespo, M. Guaita, Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods, Wood Sci Technol. 49(3), (2015) 325-331.
DOI: 10.1007/s00226-015-0719-7
Google Scholar
[30]
E. V. M. Carrasco, C. B. Varga, M. F. Souza, J. N. R. Mantilla, Avaliação das características mecânicas da madeira por meio de excitação por impulso, Revista Matéria, 22, supl. 1 (2017) 1-12.
DOI: 10.1590/s1517-707620170005.0272
Google Scholar
[31]
ASTM E1876, Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, American Society for Testing Materials (2021).
DOI: 10.1520/c1548-02r07
Google Scholar
[32]
NBR 7190, Projeto de estruturas de madeira, Associação Brasileira De Normas Técnicas, Rio de janeiro, (2022).
Google Scholar
[33]
S.P. Timoshenko, J.E. Gere, Mecânica dos sólidos. Trad. J. Rodrigues de Carvalho. Rio de Janeiro. Livros Técnicos e Científicos, 1983.
Google Scholar
[34]
S.R. Cowper, The 5hear Coefficient in Timoshenko' s beam Theory, Journal of Applied Mechanics, ASME, 33(02), (1966) 335-340.
Google Scholar