[1]
C. K. Dixit, Microfluidics for Biologists Fundamentals and Application, Springer, Florida, 2016.
Google Scholar
[2]
R. Lo, Application of Microfluidics in Chemical Engineering, Chemical Engineering & Process Techniques, 1001, (2013) 1–3.
Google Scholar
[3]
I. Ahmed, H. M. N. Iqbal, and Z. Akram, Microfluidics Engineering: Recent Trends, Valorization, and Applications, Arabian Journal for Science and Engineering. 43 (2018) 23–32.
DOI: 10.1007/s13369-017-2662-4
Google Scholar
[4]
J. Ducree, P. Koltay, and R. Zengerle, MEMS: A Practical Guide to Design, Analysis and Applications, Springer, New York, 2006.
Google Scholar
[5]
K. S. Drese, Lab on a Chip, Internist, 60 (2019) 339–344.
Google Scholar
[6]
E. Dervisevic, K. L. Tuck, N. H. Voelcker, and V. J. Cadarso, Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research, Sensors, 19 (2019) 1–36.
DOI: 10.3390/s19225027
Google Scholar
[7]
A. Blázquez-Prunera, C. R. Almeida, and M. A. Barbosa, Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium, Stem Cells International, (2017)
DOI: 10.1155/2017/2185351
Google Scholar
[8]
N. Saxena, P. Mogha, S. Dash, A. Majumder, S. Jadhav, and S. Sen, Matrix elasticity regulates mesenchymal stem cell chemotaxis, Journal of Cell Science, 131 (2018) 1–13.
DOI: 10.1242/jcs.211391
Google Scholar
[9]
K. Saptaji, Micro-milling of thin mould for continuous productions of polymer microfluidic devices, ARPN Journal of Engineering and Applied Sciences, 11 (2016) 14225–14230.
Google Scholar
[10]
B. Z. Balázs, N. Geier, M. Takács, and J. P. Davim, A review on micro-milling: recent advances and future trends, International Journal of Advanced Manufacturing Technology, 112 (2021) 655–684.
DOI: 10.1007/s00170-020-06445-w
Google Scholar
[11]
X. Wang, X. Lu, Z. Jia, G. Li, and W. Wu, The application of micro-milling technology in the processing of micro-strip antenna, International Journal of Materials and Product Technology, 51 (2015) 44–59.
DOI: 10.1504/ijmpt.2015.070082
Google Scholar
[12]
V. N. Goral, Y. C. Hsieh, O. N. Petzold, R. A. Faris, and P. K. Yuen, Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds, Journal of Micromechanics and Microengineering, (2011) 21.
DOI: 10.1088/0960-1317/21/1/017002
Google Scholar
[13]
A. Davoudinejad, G. Tosello, and M. Annoni, Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: A 3D finite element modeling investigation, International Journal of Precision Engineering and Manufacturing, 18 (2017) 1321–1332.
DOI: 10.1007/s12541-017-0157-6
Google Scholar
[14]
K. Saptaji, S. Subbiah, and J. S. Dhupia, Effect of side edge angle and effective rake angle on top burrs in micro-milling, Precision Engineering, 36 (2012) 444–450.
DOI: 10.1016/j.precisioneng.2012.01.008
Google Scholar
[15]
Z. Niu, F. Jiao, and K. Cheng, An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools, Journal of Manufacturing Processes, 31 (2018) 382–394.
DOI: 10.1016/j.jmapro.2017.11.023
Google Scholar
[16]
L. L. Alhadeff, M. B. Marshall, D. T. Curtis, and T. Slatter, Protocol for tool wear measurement in micro-milling, Wear, 420–421 (2019) 54–67.
DOI: 10.1016/j.wear.2018.11.018
Google Scholar
[17]
C. T. Tyler, J. R. Troutman, and T. L. Schmitz, Radial depth of cut stability lobe diagrams with process damping effects, Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology, 40 (2015) 318–324.
DOI: 10.1016/j.precisioneng.2014.11.004
Google Scholar
[18]
Wang, X. Cheng, G. M. Zheng, X. H. Yang, Q. J. Guo, and Q. L. Sun, Study of micromilling parameters and processes for thin wall fabrications, Precision Engineering, 56 (2018) 246–254.
DOI: 10.1016/j.precisioneng.2018.12.005
Google Scholar
[19]
Dr. L. K. R. Ardila et al., Micro-Milling Process for Manufacturing of Microfluidic Moulds, Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, (2015).
DOI: 10.20906/cps/cob-2015-1250
Google Scholar
[20]
Y. Y. C. Choong et al., The global rise of 3D printing during the COVID-19 pandemic, Nature Reviews Materials, 5 (2020) 637–639.
Google Scholar
[21]
C. Chen, B. T. Mehl, A. S. Munshi, A. D. Townsend, D. M. Spence, and R. S. Martin, 3D-printed microfluidic devices: fabrication, advantages and limitations - a mini review, Analytical Methods, 8 (2016) 6005–6012.
DOI: 10.1039/c6ay01671e
Google Scholar
[22]
P. Zhang, Z. Wang, J. Li, X. Li, and L. Cheng, From materials to devices using fused deposition modeling: A state-of-art review, Nanotechnology Reviews, 9 (2020) 1594–1609.
DOI: 10.1515/ntrev-2020-0101
Google Scholar
[23]
L. Wang and M. Pumera, Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices, TrAC - Trends in Analytical Chemistry, 135 (2021) 116151.
DOI: 10.1016/j.trac.2020.116151
Google Scholar
[24]
A. Kessler, R. Hickel, and M. Reymus, 3D Printing in Dentistry-State of the Art., Oper Dent, 45 (2020) 30–40.
DOI: 10.2341/18-229-l
Google Scholar
[25]
P. J. E. M. van der Linden, A. M. Popov, and D. Pontoni, Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer, Lab on a Chip, 20 (2020) 4128–4140.
DOI: 10.1039/d0lc00767f
Google Scholar
[26]
B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences, Analytical Chemistry, 86 (2014) 3240–3253
DOI: 10.1021/ac403397r
Google Scholar
[27]
A. Bonyár, H. Sántha, B. Ring, M. Varga, J. G. Kovács, and G. Harsányi, 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development, Procedia Engineering, 5 (2010) 291–294.
DOI: 10.1016/j.proeng.2010.09.105
Google Scholar
[28]
S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Bone tissue engineering using 3D printing, Materials Today, 16 (2013) 496–504.
DOI: 10.1016/j.mattod.2013.11.017
Google Scholar
[29]
S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, and M. P. Wolcott, Effects of processing method and fiber size on the structure and properties of wood-plastic composites, Composites Part A: Applied Science and Manufacturing, 40 (2009) 80–85.
DOI: 10.1016/j.compositesa.2008.10.004
Google Scholar
[30]
Information on: https://solusi3d.co.id/moonlite/.
Google Scholar
[31]
U. Ali, K. J. Bt. A. Karim, and N. A. Buang, A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA), Polymer Reviews, 55 (2015) 678–705
DOI: 10.1080/15583724.2015.1031377
Google Scholar
[32]
A. Ziyara, F. Çoğun, C. Varol, O. Totuk, and E. Yildirim, Optimization of Hot Embossing Process for Fabrication of Microfluidic Devices, 8th Engineering and Technology Symposium, (2015) 61–64.
Google Scholar
[33]
Information on: https://www.elveflow.com/microfluidic-reviews/general-microfluidics/the-polydimethylsiloxane-pdms-and-microfluidics/
Google Scholar
[34]
Information on: https://www.apacdigitaldentistry.com/products/sprintray-pro-cure-post-processing
Google Scholar
[35]
A. Ibrahim, D. N. Saude, M. Ibrahim, Optimization of Process Parameter for Digital Light Processing (DLP) 3D Printing, 5 (2017) 116–119.
Google Scholar
[36]
K. Saptaji, F. Triawan, T.K. Sai, A. Gebremariam Deburring Method of Aluminum Mould Produced by Milling Process for Microfluidic Device Fabrication," Indonesian Journal of Science & Technology, 6 (2021) 123-140.
DOI: 10.17509/ijost.v6i1.31852
Google Scholar