[1]
S. Irawani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res Pharm Sci. 9 (2014) 385-406.
Google Scholar
[2]
I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908-931.
Google Scholar
[3]
N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologies, J. Nanobiotechnology. 20 (2022) 1-29.
DOI: 10.1186/s12951-022-01477-8
Google Scholar
[4]
V. Chandrakala, V. Aruna, G. Angajala, Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems, emergent mater. 5 (2022) 1593-1615.
DOI: 10.1007/s42247-021-00335-x
Google Scholar
[5]
A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, K. Younis, Application of nanotechnology in food packaging: Pros and Cons, J. Agric. Food Res. 7 (2022) 1-14.
DOI: 10.1016/j.jafr.2022.100270
Google Scholar
[6]
N. Babayevska, Ł. Przysiecka, I. Iatsunskyi, G. Nowaczyk, M. Jarek, E. Janiszewska, S. Jurga, ZnO size and shape effect on antibacterial activity and cytotoxicity profile, Sci Rep. 12 (2022) 8148.
DOI: 10.1038/s41598-022-12134-3
Google Scholar
[7]
S. Behboodi, F. Baghbani-Arani, S. Abdalan, S.A Sadat, Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells, Biol. Trace Elem. Res. 187 (2019) 392– 402.
DOI: 10.1007/s12011-018-1392-0
Google Scholar
[8]
E.Y. Ahn, H. Jin, Y. Park, Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C Mater Biol Appl. 101 (2019) 204– 216.
DOI: 10.1016/j.msec.2019.03.095
Google Scholar
[9]
S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts, Ecotoxicol. Environ. Saf. 168 (2019) 260– 278.
DOI: 10.1016/j.ecoenv.2018.10.017
Google Scholar
[10]
M.D.A. Farooqui, P.S. Chauhan, P. Krishnamoorthy, J. Shaik, Extraction of silver nanoparticles from the leaf extract of Clerodendrum Inerme, Dig. J. Nanomater. 5 (2010) 43–49.
Google Scholar
[11]
B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B. 110 (2006) 15666–15675.
DOI: 10.1021/jp0608628
Google Scholar
[12]
C.M. Crisan, T. Mocan, M. Manolea, L.I. Lasca, F.A. Tăbăran, L. Mocan, Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions, Appl. Sci. 11 (2021) 1-18.
DOI: 10.3390/app11031120
Google Scholar
[13]
I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, Int J Nanomedicine. 15 (2020) 2555-2562.
DOI: 10.2147/ijn.s246764
Google Scholar
[14]
A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, G. Nath, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum, J Ayurveda Integr Med. 11 (2020) 37-44.
DOI: 10.1016/j.jaim.2017.11.003
Google Scholar
[15]
S. Ansar, H. Tabassum, N.S.M. Aladwan, M.N. Ali, B. Almaarik, S. AlMahrouqi, M. Abudawood, N. Banu, R. Alsubki, Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties, Sci. Rep. 10 (2020) 18564.
DOI: 10.1038/s41598-020-74371-8
Google Scholar
[16]
E.M. Modan, A.G. Plaiasu, Adventages and Disadvantages of Chemical Methods in the Elaboration of Nanoparticles, The Annals of "Dunarea De Jos" University of Galaty Fascicle IX. Metallurgy and Material Science. 43 (2020) 53-60.
DOI: 10.35219/mms.2020.1.08
Google Scholar
[17]
K. Khosravi-Darani, A. Gomes da Cruz, M.R. Mozafari, Z. Abdi, N. Ahmadi, Biosynthesis of metal nanoparticles by probiotic bacteria. Lett. Appl. NanoBioScience, 8 (2019) 619-626.
DOI: 10.33263/lianbs83.619626
Google Scholar
[18]
S.R. Vijayan, P. Santhiyagu, R. Ramasamy, P. Arivalagan, G. Kumar, K. Ethira, B.R. Ramaswamy, Seaweeds: A resource for marine bionanotechnology, Enzyme Microb. Technol. 95 (2016) 45–57.
DOI: 10.1016/j.enzmictec.2016.06.009
Google Scholar
[19]
A. Almatroudi, Silver nanoparticles: synthesis, characterisation and biomedical applications, Open Life Sci. 15 (2020) 818-839.
DOI: 10.1515/biol-2020-0094
Google Scholar
[20]
S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chodhury, M. Nahrin, A.B.M.S. Islam, H.C. Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges, Environ. Res. 204 (2022) 111967.
DOI: 10.1016/j.envres.2021.111967
Google Scholar
[21]
F. Arshad, G.A. Naikoo, I.U. Hassan, S.R. Chava, M. El-Tanani, A.A. Aljabali, M.M. Tambulawa, Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective, Appl Biochem Biotechnol (2023) 1-34.
DOI: 10.1007/s12010-023-04719-z
Google Scholar
[22]
G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, J Nanopart Res. 13 (2011) 2981–2988.
DOI: 10.1007/s11051-010-0193-y
Google Scholar
[23]
A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microb. Pathog, 102 (2017) 133–142.
DOI: 10.1016/j.micpath.2016.11.030
Google Scholar
[24]
A. Dhaka, S.C. Mali, S. Sharma, R. Trivedi, A review on biological synthesis of silver nanoparticles and their potential applications, Results Chem. 6 (2023) 101108.
DOI: 10.1016/j.rechem.2023.101108
Google Scholar
[25]
C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Correction: green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv. 11 (2022) 2804-2837.
DOI: 10.1039/d0ra09941d
Google Scholar
[26]
A. Zuhrotun, D.J. Oktaviani, A.N. Hasanah, Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compound, Molecules. 28 (2023) 1-31.
DOI: 10.3390/molecules28073240
Google Scholar
[27]
R. Javed, M. Zia, S. Naz, S.O. Aisida, N.U. Ain, Q. Ao. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects, J. Nanobiotechnol. 18 (2020) 172.
DOI: 10.1186/s12951-020-00704-4
Google Scholar
[28]
H.S.A. Al-Shmgani, W.H. Mohammed, G.M. Sulaiman, A.H. Saadoon, Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities, Artif. Cells, Nanomed. Biotechnol. 45 (2016) 1234–1240.
DOI: 10.1080/21691401.2016.1220950
Google Scholar
[29]
M.J. Ahmed, G. Murtaza, A. Mehmood, T.M. Bhatti, Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity, Mater. Lett. 153 (2015), 10–13.
DOI: 10.1016/j.matlet.2015.03.143
Google Scholar
[30]
N. Krithiga, A. Rajalakshmi, A. Jayachitra, Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens, J. Nanosci. 1 (2015), 128204.
DOI: 10.1155/2015/928204
Google Scholar
[31]
P. Moteriya, S. Chanda, Green Synthesis of Silver Nanoparticles from Caesalpinia pulcherrima Leaf Extract and Evaluation of Their Antimicrobial, Cytotoxic and Genotoxic Potential (3-in-1 System), Inorg. Organomet. Polym. Mater., 30 (2020) 3920–3932.
DOI: 10.1007/s10904-020-01532-7
Google Scholar
[32]
N. Chandrasekhar, S.P. Vinay, Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity, Appl. Nanosci., 7 (2017) 851–861.
DOI: 10.1007/s13204-017-0624-5
Google Scholar
[33]
B. Ajitha, Y.A.K. Reddy, Y. Lee, M.J. Kim, C.W. Ahn, Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects, Appl. Organomet. Chem. 33 (2019) 4867.
DOI: 10.1002/aoc.4867
Google Scholar
[34]
V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng., C, 58 (2016) 36–43.
DOI: 10.1016/j.msec.2015.08.018
Google Scholar
[35]
M. Khatami, M.S. Nejad, S. Salari, P.G.N. Almani, Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani, IET Nanobiotechnol. 10 (2016) 237–243.
DOI: 10.1049/iet-nbt.2015.0078
Google Scholar
[36]
S. Balakrishnan, I. Sivaji, S. Kandasamy, S. Duraisamy, N.S. Kumar G. Gurusubramanian, Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates, Environ. Sci. Pollut. Res. 24 (2017) 14758–14769.
DOI: 10.1007/s11356-017-9065-7
Google Scholar
[37]
L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon, S.V.N. Pammi, Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica, J. Environ. Sci. 55 (2017) 157–163.
DOI: 10.1016/j.jes.2016.04.027
Google Scholar
[38]
M.A. Ansari, M.A. Alzohairy, One-Pot Facile Green Synthesis of Silver Nanoparticles Using Seed Extract of Phoenix dactylifera and Their Bactericidal Potential against MRSA, J. Evidence-Based Complementary Altern. Med. (2018) 1860280.
DOI: 10.1155/2018/1860280
Google Scholar
[39]
S.M. Ali, N.M.H. Yousef, N.A. Nafady, Application of Biosynthesized Silver Nanoparticles for the Control of Land Snail Eobania vermiculata and Some Plant Pathogenic Fungi, J. Nanomater. (2015) 1–10.
DOI: 10.1155/2015/218904
Google Scholar
[40]
Y.M.S. Jamil, A.N. Al-Hakimi, H.M.A. Al-Maydama, G.Y. Almahwiti, A. Qasem, S.M. Saleh, Optimum Green Synthesis, Characterization, and Antibacterial Activity of Silver Nanoparticles Prepared from an Extract of Aloe fleurentinorum, Int. J. Chem.Eng. (2024) 1-8.
DOI: 10.1155/2024/2804165
Google Scholar
[41]
S. Karim, S. Dali, M. Rahmah, Synthesis of silver nanoparticles using bioreductors from clove leaf extract (Syzygium aromaticum) and test of its antibacterial activity, J. Phys: Conf. Ser. (2020)1-7
DOI: 10.1088/1742-6596/1763/1/012051
Google Scholar
[42]
B.W. Lay, Analisis Mikroba di Laboratorium, PT. Raja Grafindo Persada, Jakarta, 1994.
Google Scholar
[43]
W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT-Food Science and Technology. 28 (1995) 25-3.
DOI: 10.1016/s0023-6438(95)80008-5
Google Scholar
[44]
M.Z. Shah, Z.H. Guan, A.U. Din, A. Ali, A.U Rehman, K. Jan, S. Faisal, S. Saud, M. Adnan, F. Wahid, S. Alamri, M.H, Siddiqui, S. Ali, W. Nasim, H.M. Hammad, S. Fahad, Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities, Sci. Rep. 11 (2021) 20754.
DOI: 10.1038/s41598-021-00296-5
Google Scholar
[45]
G. Nikaeen, S. Yousefinejad, S. Rahmdel, F. Samari, S. Mahdavinia, Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity, Sci. Rep. 10 (2020) 1–16.
DOI: 10.1038/s41598-020-66357-3
Google Scholar
[46]
Y. He, F, Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, Z. Huang, J. Li, C. Zeng, Q. Zhang, Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities, RSC Adv. 7 (2017) 39842−39851.
DOI: 10.1039/c7ra05286c
Google Scholar
[47]
T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size, Colloids Surf B. 82 (2011) 152-159.
DOI: 10.1016/j.colsurfb.2010.08.036
Google Scholar
[48]
D. Chunfa, C. Fei, Z. Xianglin, W. Xiangjie, Y. Xiuzhi, Y. Bin, Rapid and Green Synthesis of Monodisperse Silver Nanoparticles Using Mulberry Leaf Extract, Rare Metal Mat Eng, 47 (2018) 1089-1095.
DOI: 10.1016/s1875-5372(18)30125-5
Google Scholar
[49]
J. Jana, M. Galguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application, RCS Adv, 6 (2016) 86174-86211.
DOI: 10.1039/c6ra14173k
Google Scholar
[50]
A. Miri, M. Sarani, M.R. Bazaz, M. Darroudi, Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties, Spectrochim. Acta, Part A. 141 (2015) 287–291.
DOI: 10.1016/j.saa.2015.01.024
Google Scholar
[51]
S. Ahmed, S. Ikram, Synthesis of Gold Nanoparticles using Plant Extract: An Overview, Nano Res. Appl. 1 (2015) 1-6.
Google Scholar
[52]
M.K. Choudhary, J. Kataria, S.S. Cameotra, S. S, J. Singh, A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity, Appl. Nanosci. 6 (2016) 105–111.
DOI: 10.1007/s13204-015-0418-6
Google Scholar
[53]
P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property, J. Saudi Chem. Soc. 19 (2015) 311-317.
DOI: 10.1016/j.jscs.2012.04.007
Google Scholar
[54]
Hemlata, P.R. Meena, A.P. Singh, K.K, Yejavath, Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum, ACS Omega. 5 (2020) 5520-5628.
DOI: 10.1021/acsomega.0c00155
Google Scholar
[55]
P.R. More, S. Pandit, A.D. Filippis, G. Franci, I. Mijakovic, M. Galdiero, Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens, Microorganisms. 11(2023) 1-27.
DOI: 10.3390/microorganisms11020369
Google Scholar
[56]
L. Azeez, A. Lateef, S.A. Adebisi, Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn, Appl. Nanosci. 7 (2017) 59–66.
DOI: 10.1007/s13204-017-0546-2
Google Scholar
[57]
Z. Li, J. Teng, Y. Lyu, X. Hu, Y. Zhao, M. Wang, Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917, Molecules. 24 (2019) 1–12.
DOI: 10.3390/molecules24010051
Google Scholar