Synthesis of Silver Nanoparticles with Syzygium aromaticum Leaves Extract as Antioxidant and Antimicrobial Materials

Article Preview

Abstract:

Silver nanoparticles (AgNPs) have attracted attention due to their unique properties and potential application. This research aimed to do green synthesis of AgNPs with Syzygium aromaticum leaves extract (SALE) and evaluate their antibacterial and antioxidant activities. Syzygium aromaticum leaves were extracted using distilled water at 70 °C for 30 min and the results were characterized with FTIR. AgNPs were synthesized by mixing AgNO3 precursor with SALE. The effects of parameters such as volume ratio of AgNO3 precursor to SALE, AgNO3 concentrations, and synthesis times were investigated. The synthesized AgNPs were characterized using UV-Vis spectrophotometer, FTIR, and TEM. Antibacterial activity of SALE and AgNPs was investigated against Escherichia coli (E.coli) and Bacillus subtilis (B. subtilis) with disc diffusion method and antioxidant activity was tested with DPPH method. The FTIR characterization revealed that SALE and resulting AgNPs contain O-H, C-H, C=O, C=C, C-O, and C≡C functional groups. The UV-Vis characterization demonstrated that AgNPs exhibited an absorption peak at λ = 420 nm indicating surface plasmon resonance. The optimal volume ratio of AgNO3 to SALE, AgNO3 concentrations, and synthesis time for AgNPs synthesis was achieved at 10:3, 5 mM, and 60 min respectively. TEM characterization indicated that AgNPs have spherical form and sizes ranging from 14 to 32 nm. The antibacterial testing revealed that AgNPs have antibacterial activities against E. coli and B. subtilis with inhibition zone values are 8,38 ± 0,48 and 6,88 ± 1,47 respectively. Additionally, antioxidant testing presented that the IC50 values were 85.05 µg/mL for SALE and 34.71 µg/mL for AgNPs. The results indicate that green synthesis of AgNPs from AgNO3 precursor with SALE was done successfully and this nanoparticle has good antibacterial and antioxidant activities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-120

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Irawani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res Pharm Sci. 9 (2014) 385-406.

Google Scholar

[2] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908-931.

Google Scholar

[3] N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologies, J. Nanobiotechnology. 20 (2022) 1-29.

DOI: 10.1186/s12951-022-01477-8

Google Scholar

[4] V. Chandrakala, V. Aruna, G. Angajala, Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems, emergent mater. 5 (2022) 1593-1615.

DOI: 10.1007/s42247-021-00335-x

Google Scholar

[5] A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, K. Younis, Application of nanotechnology in food packaging: Pros and Cons, J. Agric. Food Res. 7 (2022) 1-14.

DOI: 10.1016/j.jafr.2022.100270

Google Scholar

[6] N. Babayevska, Ł. Przysiecka, I. Iatsunskyi, G. Nowaczyk, M. Jarek, E. Janiszewska, S. Jurga, ZnO size and shape effect on antibacterial activity and cytotoxicity profile, Sci Rep. 12 (2022) 8148.

DOI: 10.1038/s41598-022-12134-3

Google Scholar

[7] S. Behboodi, F. Baghbani-Arani, S. Abdalan, S.A Sadat, Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells, Biol. Trace Elem. Res. 187 (2019) 392– 402.

DOI: 10.1007/s12011-018-1392-0

Google Scholar

[8] E.Y. Ahn, H. Jin, Y. Park, Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts.  Mater Sci Eng C Mater Biol Appl. 101 (2019) 204– 216.

DOI: 10.1016/j.msec.2019.03.095

Google Scholar

[9] S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts, Ecotoxicol. Environ. Saf. 168 (2019) 260– 278.

DOI: 10.1016/j.ecoenv.2018.10.017

Google Scholar

[10] M.D.A. Farooqui, P.S. Chauhan, P. Krishnamoorthy, J. Shaik, Extraction of silver nanoparticles from the leaf extract of Clerodendrum Inerme, Dig. J. Nanomater. 5 (2010) 43–49.

Google Scholar

[11] B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B. 110 (2006) 15666–15675.

DOI: 10.1021/jp0608628

Google Scholar

[12] C.M. Crisan, T. Mocan, M. Manolea, L.I. Lasca, F.A. Tăbăran, L. Mocan, Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions, Appl. Sci. 11 (2021) 1-18.

DOI: 10.3390/app11031120

Google Scholar

[13] I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, Int J Nanomedicine. 15 (2020) 2555-2562.

DOI: 10.2147/ijn.s246764

Google Scholar

[14] A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, G. Nath, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum, J Ayurveda Integr Med. 11 (2020) 37-44.

DOI: 10.1016/j.jaim.2017.11.003

Google Scholar

[15] S. Ansar, H. Tabassum, N.S.M. Aladwan, M.N. Ali, B. Almaarik, S. AlMahrouqi, M. Abudawood, N. Banu, R. Alsubki, Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties, Sci. Rep. 10 (2020) 18564.

DOI: 10.1038/s41598-020-74371-8

Google Scholar

[16] E.M. Modan, A.G. Plaiasu, Adventages and Disadvantages of Chemical Methods in the Elaboration of Nanoparticles, The Annals of "Dunarea De Jos" University of Galaty Fascicle IX. Metallurgy and Material Science. 43 (2020) 53-60.

DOI: 10.35219/mms.2020.1.08

Google Scholar

[17] K. Khosravi-Darani, A. Gomes da Cruz, M.R. Mozafari, Z. Abdi, N. Ahmadi, Biosynthesis of metal nanoparticles by probiotic bacteria. Lett. Appl. NanoBioScience, 8 (2019) 619-626.

DOI: 10.33263/lianbs83.619626

Google Scholar

[18] S.R. Vijayan, P. Santhiyagu, R. Ramasamy, P. Arivalagan, G. Kumar, K. Ethira, B.R. Ramaswamy, Seaweeds: A resource for marine bionanotechnology, Enzyme Microb. Technol. 95 (2016) 45–57.

DOI: 10.1016/j.enzmictec.2016.06.009

Google Scholar

[19] A. Almatroudi, Silver nanoparticles: synthesis, characterisation and biomedical applications, Open Life Sci. 15 (2020) 818-839.

DOI: 10.1515/biol-2020-0094

Google Scholar

[20] S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chodhury, M. Nahrin, A.B.M.S. Islam, H.C. Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges, Environ. Res. 204 (2022) 111967.

DOI: 10.1016/j.envres.2021.111967

Google Scholar

[21] F. Arshad, G.A. Naikoo, I.U. Hassan, S.R. Chava, M. El-Tanani, A.A. Aljabali, M.M. Tambulawa, Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective, Appl Biochem Biotechnol (2023) 1-34.

DOI: 10.1007/s12010-023-04719-z

Google Scholar

[22] G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, J Nanopart Res. 13 (2011) 2981–2988.

DOI: 10.1007/s11051-010-0193-y

Google Scholar

[23] A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microb. Pathog, 102 (2017) 133–142.

DOI: 10.1016/j.micpath.2016.11.030

Google Scholar

[24] A. Dhaka, S.C. Mali, S. Sharma, R. Trivedi, A review on biological synthesis of silver nanoparticles and their potential applications, Results Chem. 6 (2023) 101108.

DOI: 10.1016/j.rechem.2023.101108

Google Scholar

[25] C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Correction: green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv. 11 (2022) 2804-2837.

DOI: 10.1039/d0ra09941d

Google Scholar

[26] A. Zuhrotun, D.J. Oktaviani, A.N. Hasanah, Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compound, Molecules. 28 (2023) 1-31.

DOI: 10.3390/molecules28073240

Google Scholar

[27] R. Javed, M. Zia, S. Naz, S.O. Aisida, N.U. Ain, Q. Ao. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects, J. Nanobiotechnol. 18 (2020) 172.

DOI: 10.1186/s12951-020-00704-4

Google Scholar

[28] H.S.A. Al-Shmgani, W.H. Mohammed, G.M. Sulaiman, A.H. Saadoon, Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities, Artif. Cells, Nanomed. Biotechnol. 45 (2016) 1234–1240.

DOI: 10.1080/21691401.2016.1220950

Google Scholar

[29] M.J. Ahmed, G. Murtaza, A. Mehmood, T.M. Bhatti, Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity, Mater. Lett. 153 (2015), 10–13.

DOI: 10.1016/j.matlet.2015.03.143

Google Scholar

[30] N. Krithiga, A. Rajalakshmi, A. Jayachitra, Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens, J. Nanosci. 1 (2015), 128204.

DOI: 10.1155/2015/928204

Google Scholar

[31] P. Moteriya, S. Chanda, Green Synthesis of Silver Nanoparticles from Caesalpinia pulcherrima Leaf Extract and Evaluation of Their Antimicrobial, Cytotoxic and Genotoxic Potential (3-in-1 System), Inorg. Organomet. Polym. Mater., 30 (2020) 3920–3932.

DOI: 10.1007/s10904-020-01532-7

Google Scholar

[32] N. Chandrasekhar, S.P. Vinay, Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity, Appl. Nanosci., 7 (2017) 851–861.

DOI: 10.1007/s13204-017-0624-5

Google Scholar

[33] B. Ajitha, Y.A.K. Reddy, Y. Lee, M.J. Kim, C.W. Ahn, Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects, Appl. Organomet. Chem. 33 (2019) 4867.

DOI: 10.1002/aoc.4867

Google Scholar

[34] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng., C, 58 (2016) 36–43.

DOI: 10.1016/j.msec.2015.08.018

Google Scholar

[35] M. Khatami, M.S. Nejad, S. Salari, P.G.N. Almani, Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani, IET Nanobiotechnol. 10 (2016) 237–243.

DOI: 10.1049/iet-nbt.2015.0078

Google Scholar

[36] S. Balakrishnan, I. Sivaji, S. Kandasamy, S. Duraisamy, N.S. Kumar G. Gurusubramanian, Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates, Environ. Sci. Pollut. Res. 24 (2017) 14758–14769.

DOI: 10.1007/s11356-017-9065-7

Google Scholar

[37] L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon, S.V.N. Pammi, Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica, J. Environ. Sci. 55 (2017) 157–163.

DOI: 10.1016/j.jes.2016.04.027

Google Scholar

[38] M.A. Ansari, M.A. Alzohairy, One-Pot Facile Green Synthesis of Silver Nanoparticles Using Seed Extract of Phoenix dactylifera and Their Bactericidal Potential against MRSA, J. Evidence-Based Complementary Altern. Med. (2018) 1860280.

DOI: 10.1155/2018/1860280

Google Scholar

[39] S.M. Ali, N.M.H. Yousef, N.A. Nafady, Application of Biosynthesized Silver Nanoparticles for the Control of Land Snail Eobania vermiculata and Some Plant Pathogenic Fungi, J. Nanomater. (2015) 1–10.

DOI: 10.1155/2015/218904

Google Scholar

[40] Y.M.S. Jamil, A.N. Al-Hakimi, H.M.A. Al-Maydama, G.Y. Almahwiti, A. Qasem, S.M. Saleh, Optimum Green Synthesis, Characterization, and Antibacterial Activity of Silver Nanoparticles Prepared from an Extract of Aloe fleurentinorum, Int. J. Chem.Eng. (2024) 1-8.

DOI: 10.1155/2024/2804165

Google Scholar

[41] S. Karim, S. Dali, M. Rahmah, Synthesis of silver nanoparticles using bioreductors from clove leaf extract (Syzygium aromaticum) and test of its antibacterial activity, J. Phys: Conf. Ser. (2020)1-7

DOI: 10.1088/1742-6596/1763/1/012051

Google Scholar

[42] B.W. Lay, Analisis Mikroba di Laboratorium, PT. Raja Grafindo Persada, Jakarta, 1994.

Google Scholar

[43] W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT-Food Science and Technology. 28 (1995) 25-3.

DOI: 10.1016/s0023-6438(95)80008-5

Google Scholar

[44] M.Z. Shah, Z.H. Guan, A.U. Din, A. Ali, A.U Rehman, K. Jan, S. Faisal, S. Saud, M. Adnan, F. Wahid, S. Alamri, M.H, Siddiqui, S. Ali, W. Nasim, H.M. Hammad, S. Fahad, Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities, Sci. Rep. 11 (2021) 20754.

DOI: 10.1038/s41598-021-00296-5

Google Scholar

[45] G. Nikaeen, S. Yousefinejad, S. Rahmdel, F. Samari, S. Mahdavinia, Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity, Sci. Rep. 10 (2020) 1–16.

DOI: 10.1038/s41598-020-66357-3

Google Scholar

[46] Y. He, F, Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, Z. Huang, J. Li, C. Zeng, Q. Zhang, Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities, RSC Adv. 7 (2017) 39842−39851.

DOI: 10.1039/c7ra05286c

Google Scholar

[47] T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size, Colloids Surf B. 82 (2011) 152-159.

DOI: 10.1016/j.colsurfb.2010.08.036

Google Scholar

[48] D. Chunfa, C. Fei, Z. Xianglin, W. Xiangjie, Y. Xiuzhi, Y. Bin, Rapid and Green Synthesis of Monodisperse Silver Nanoparticles Using Mulberry Leaf Extract, Rare Metal Mat Eng, 47 (2018) 1089-1095.

DOI: 10.1016/s1875-5372(18)30125-5

Google Scholar

[49] J. Jana, M. Galguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application, RCS Adv, 6 (2016) 86174-86211.

DOI: 10.1039/c6ra14173k

Google Scholar

[50] A. Miri, M. Sarani, M.R. Bazaz, M. Darroudi, Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties, Spectrochim. Acta, Part A. 141 (2015) 287–291.

DOI: 10.1016/j.saa.2015.01.024

Google Scholar

[51] S. Ahmed, S. Ikram, Synthesis of Gold Nanoparticles using Plant Extract: An Overview, Nano Res. Appl. 1 (2015) 1-6.

Google Scholar

[52] M.K. Choudhary, J. Kataria, S.S. Cameotra, S. S, J. Singh, A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity, Appl. Nanosci. 6 (2016) 105–111.

DOI: 10.1007/s13204-015-0418-6

Google Scholar

[53] P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property, J. Saudi Chem. Soc. 19 (2015) 311-317.

DOI: 10.1016/j.jscs.2012.04.007

Google Scholar

[54] Hemlata, P.R. Meena, A.P. Singh, K.K, Yejavath, Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum, ACS Omega. 5 (2020) 5520-5628.

DOI: 10.1021/acsomega.0c00155

Google Scholar

[55] P.R. More, S. Pandit, A.D. Filippis, G. Franci, I. Mijakovic, M. Galdiero, Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens, Microorganisms. 11(2023) 1-27.

DOI: 10.3390/microorganisms11020369

Google Scholar

[56] L. Azeez, A. Lateef, S.A. Adebisi, Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn, Appl. Nanosci. 7 (2017) 59–66.

DOI: 10.1007/s13204-017-0546-2

Google Scholar

[57] Z. Li, J. Teng, Y. Lyu, X. Hu, Y. Zhao, M. Wang, Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917, Molecules. 24 (2019) 1–12.

DOI: 10.3390/molecules24010051

Google Scholar