Process Optimization of Pressure-induced Autoclave Foaming of Polylactide by Supercritical CO2 Using Central Composite Design of Response Surface Methodology

Article Preview

Abstract:

A pressure-induced autoclave foaming assisted by supercritical CO2 of degradable polylactide (PLA) has been developed. A central composite design (CCD) of response surface methodology (RSM) is used to optimize three distinct process conditions: foaming temperature, pressure, and time. The mathematical model built for examining the effect of process conditions on the foam density and volume expansion ratio was verified and determined to be acceptable with an R-square value derived from the regression model of 0.930 and 0.934, respectively. The experimental and statistical results showed that of the three factors examined, the foaming pressure had the greatest impact on the density and volume expansion ratio of the PLA foams. The foaming temperature and time also had significant interaction impacts on both responses. It was observed that the following conditions are optimal for foaming of PLA, with a maximum VER of 10.107 and a minimum foam density of 0.123 g/cc: foaming temperature of 165.86 °C and foaming pressure of 152.4 bar for 2.38 h of foaming time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-98

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Oluwabunmi K, D'Souza NA, Zhao W, Choi T-Y, Theyson T. Sci Rep 10(1) (2020) 1-20.

Google Scholar

[2] Rajput MS, Burman M, Köll J, Hallström S. J Sandw Struct Mater 21(1) (2019) 260-88.

Google Scholar

[3] Sumardiono S, Pudjihastuti I, Amalia R, Yudanto Y, editors. IOP Conf Ser Mater Sci Eng; 2021: IOP Publishing).

DOI: 10.1088/1757-899x/1053/1/012082

Google Scholar

[4] Faba S, Arrieta MP, Agüero Á, Torres A, Romero J, Rojas A, et al. Polymers 14(20) (2022) 4394.

Google Scholar

[5] Yudanto YA, Pudjihastuti I. Int J Eng Appl Sci Tech, 5(8) (2020) 1-5.

Google Scholar

[6] Redondo FL, Giaroli MC, Ciolino AE, Ninago MD. Biointerface Res Appl Chem 12 (2022) 5610-24.

Google Scholar

[7] Chai J, Wang G, Zhao J, Zhang A, Shi Z, Wei C, et al. J CO2 Util 49 (2021) 101553.

Google Scholar

[8] Guo F, Liao X, Li S, Yan Z, Tang W, Li G. J Supercrit Fluids 177 (2021) 105344.

Google Scholar

[9] Wang J, Chai J, Wang G, Zhao J, Zhang D, Li B, et al. Int J Biol Macromol 138 (2019)144-55.

Google Scholar

[10] Li B, Zhao G, Wang G, Zhang L, Gong J, Shi Z. Sep Purif Technol 257 (2021) 117949.

Google Scholar

[11] Wang S, Yang W, Li X, Hu Z, Wang B, Li M, et al. Int J Biol Macromol 193 (2021) 1059-67.

Google Scholar

[12] Xiao W, Niu B, Yu M, Sun C, Wang L, Zhou L, et al. J Clean Prod 278 (2021) 123507.

Google Scholar

[13] Dirlam PT, Goldfeld DJ, Dykes DC, Hillmyer MA. ACS Sustain Chem Eng 7(1) (2018) 1698-706.

Google Scholar

[14] Costeux S, Zhu L. Polymer 54(11) (2013) 2785-95.

Google Scholar

[15] Di Maio E, Iannace S, Mensitieri G. Foams and their applications. Supercritical Fluid Science and Technology. 9: Elsevier; 2021. pp.1-20.

DOI: 10.1016/b978-0-444-63724-6.00001-9

Google Scholar

[16] Parker K, Garancher JP, Shah S, Weal S, Fernyhough A. Handbook of bioplastics and biocomposites engineering applications (2011) 161-75.

DOI: 10.1002/9781118203699.ch6

Google Scholar

[17] Patankar S, Kranov Y. Mater Sci Eng A 527(6) (2010) 1361-6.

Google Scholar

[18] Ghavami S, Khademi M-H, Hemmati F, Fazeli A, Mohammadi-Roshandeh J, editors. Eco-friendly and Smart Polymer Systems 13; 2020: Springer).

DOI: 10.1007/978-3-030-45085-4_144

Google Scholar

[19] Cardoso EC, Parra DF, Scagliusi SR, Sales RM, Caviquioli F, Lugão AB. Use of Gamma Radiation Techniques in Peaceful Applications 139 (2019).

DOI: 10.5772/intechopen.85462

Google Scholar

[20] Lin L, Lee Y, Park HE. Phys Fluids 33(6) (2021) 067119.

Google Scholar

[21] Drumright RE, Gruber PR, Henton DE. Adv Mater 12 (2000) 1841-6.

Google Scholar

[22] Nofar M, Ameli A, Park CB. Macromol Mater Eng 299(10) (2014) 1232-9.

Google Scholar

[23] Di Maio E, Iannace S, Mensitieri G. Gas foaming with physical blowing agents. Supercritical Fluid Science and Technology. 9: Elsevier; 2021. pp.33-54.

DOI: 10.1016/b978-0-444-63724-6.00002-0

Google Scholar

[24] Kiran E. J Supercrit Fluids 110 (2016) 126-53.

Google Scholar

[25] Dorgan J, Auras A, Lim L, Selke S, Tsuji H. Hoboken New Jersey (2010) 125.

Google Scholar

[26] Liu W, Wu X, Chen X, Liu S, Zhang C. ACS omega 7(7) (2022) 6248-60.

Google Scholar

[27] Meng X, Shi G, Wu C, Chen W, Xin Z, Shi Y, et al. Polym Degrad Stab 124 (2016) 112-8.

Google Scholar

[28] Nofar M, Park CB. Prog Polym Sci 39(10) (2014) 1721-41.

Google Scholar

[29] Kong W-l, Bao J-B, Wang J, Hu G-H, Xu Y, Zhao L. Polymer 90 (2016) 331-41.

Google Scholar

[30] Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P. Macromolecules 47(19) (2014) 6791-803.

Google Scholar

[31] Haham H, Riscoe A, Frank CW, Billington SL. Applied Surface Science Advances 3 (2021) 100059.

Google Scholar

[32] Osman MA, Virgilio N, Rouabhia M, Mighri F. Mater Sci Appl 13(2) (2022) 63-77.

Google Scholar

[33] Qiang W, Zhao L, Liu T, Liu Z, Gao X, Hu D. J Supercrit Fluids 158 (2020) 104718.

Google Scholar

[34] Moo-Tun NM, Iñiguez-Covarrubias G, Valadez-Gonzalez A. Polym Test 86 (2020) 106482.

Google Scholar

[35] Di Maio E, Iannace S, Mensitieri G. Batch processing. Supercritical Fluid Science and Technology. 9: Elsevier; 2021. pp.389-410.

DOI: 10.1016/b978-0-444-63724-6.00012-3

Google Scholar

[36] Nofar M, Park CB. Progress in Polymer Science 39(10) (2014) 1721-41.

Google Scholar

[37] Lee S-T. Introduction: polymeric foams, mechanisms, and materials. Polymeric foams: CRC press; 2004. pp.15-29.

DOI: 10.1201/9780203506141.ch0

Google Scholar

[38] Moghri M, Khakpour M, Akbarian M, Saeb M. J Vinyl Addit Technol 21(1) (2015) 51-9.

Google Scholar

[39] Geng L-H, Peng X-F, Jing X, Li L-W, Huang A, Xu B-P, et al. J Mater Res 31(3)(2016)348-59.

Google Scholar

[40] Li R, Ye L, Zhao X, Coates P, Caton-Rose F. Ind Eng Chem Res 59(16) (2020) 7624-32.

Google Scholar

[41] ASTM International. (2020.

Google Scholar

[42] Fan C, Wan C, Gao F, Huang C, Xi Z, Xu Z, et al. J Cell Plast 52(3) (2016) 277-98.

Google Scholar

[43] Jaikaew N, Auras R, Opaprakasit P. Chiang Mai J Sci 49(1) (2022) 69-80.

Google Scholar

[44] Kumar S, Meena H, Chakraborty S, Meikap B. Int J Min Sci Technol 28(4) (2018) 621-9.

Google Scholar

[45] Rocha S, Ascensão G, Maia L. Applied Sciences 13(18) (2023) 10428.

Google Scholar

[46] Auras RA, Lim L-T, Selke SE, Tsuji H. Poly (lactic acid): synthesis, structures, properties, processing, applications, and end of life: John Wiley & Sons; 2022.

DOI: 10.1002/9781119767480

Google Scholar

[47] Shi X, Wang L, Kang Y, Qin J, Li J, Zhang H, et al. Journal of Polymer Research 25(2018)1-12.

Google Scholar

[48] Zhang Y, Wang J, Zhou J, Sun J, Jiao Z. Polym Adv Technol 33(6) (2022) 1906-15.

Google Scholar

[49] Barmouz M, Behravesh AH. Polymer Testing 61 (2017) 300-13.

Google Scholar

[50] Dirlam PT, Goldfeld DJ, Dykes DC, Hillmyer MA. ACS Sustainable Chemistry & Engineering 7(1) (2018) 1698-706.

Google Scholar

[51] Xu L-Q, Huang H-X. J Cell Plast 56(1) (2020) 89-104.

Google Scholar

[52] Guo F, Liao X, Li S, Yan Z, Tang W, Li G. J Supercrit Fluids 177 (2021) 105344.

Google Scholar

[53] Rahman R, Fazlizan A, Asim N, Thongtha A. J Renew Mater 9(1) (2021) 61-72.

Google Scholar

[54] Xu L, Qian S, Zheng W, Bai Y, Zhao Y. Industrial & Engineering Chemistry Research 57(46) (2018) 15690-6.

Google Scholar

[55] Zhai W, Ko Y, Zhu W, Wong A, Park CB. Int J Mol Sci 10(12) (2009) 5381-97.

Google Scholar

[56] Li D-c, Liu T, Zhao L, Lian X-s, Yuan W-k. Ind Eng Chem Res 50(4) (2011) 1997-2007.

Google Scholar

[57] Yang Y, Li X, Zhang Q, Xia C, Chen C, Chen X, et al. J Supercrit Fluids 145 (2019) 122-32.

Google Scholar

[58] Ghanbar S, Yousefzade O, Hemmati F, Garmabi H. J Thermoplast Compos Mater 29(6) (2016) 799-816.

Google Scholar

[59] Corre Y-M, Maazouz A, Duchet J, Reignier J. J Supercrit Fluids 58(1) (2011) 177-88.

Google Scholar

[60] Standau T, Long H, Murillo Castellón S, Brütting C, Bonten C, Altstädt V. Materials 13(6) (2020) 1371.

DOI: 10.3390/ma13061371

Google Scholar

[61] Gao D, Wang J-p, Wang Y, Zhang P. J Cell Plast 52(2) (2016) 175-87.

Google Scholar

[62] Ema Y, Ikeya M, Okamoto M. Polymer 47(15) (2006) 5350-9.

Google Scholar

[63] Feng JJ, Bertelo CA. J Rheol 48(2) (2004) 439-62.

Google Scholar

[64] Sun Y, Ueda Y, Suganaga H, Haruki M, Kihara S-i, Takishima S. J Supercrit Fluids 103 (2015) 38-47.

Google Scholar

[65] Arifan F, Dewi AL, Yudanto YA, Sapatra EF, Broto RTW, Sutaryo S, et al. Int J Technol 13(3) (2022) 291-319.

Google Scholar

[66] Yulianto ME, Amalia R, Yudanto YA, editors. E3S Web Conf; 2020: EDP Sciences).

Google Scholar

[67] Obi B. Polymeric foams structure-property-performance: A design guide: William Andrew; 2017.

Google Scholar

[68] Chen J, Yang L, Chen D, Mai Q, Wang M, Wu L, et al. Cell Polym 40(3) (2021) 101-18.

Google Scholar

[69] Azimi H, Jahani D. The Journal of Supercritical Fluids 139 (2018) 30-7.

Google Scholar

[70] Xu Y, Zhang S, Peng X, Wang J. Eur Polym J 99 (2018) 250-8.

Google Scholar

[71] Gutiérrez C, Rodríguez J, Gracia I, De Lucas A, García M. J Supercrit Fluids 88(2014) 92-104.

Google Scholar

[72] Dippold M, Ruckdäschel H. J Supercrit Fluids 190 (2022) 105734.

Google Scholar

[73] Istadi I, Suherman S, Buchori L. Bull Chem React Eng 5(2) (2010) 103.

Google Scholar

[74] Montgomery DC. Design and analysis of experiments: John wiley & sons; 2017.

Google Scholar

[75] Jain R, Mudiam MKR, Ch R, Chauhan A, Khan HA, Murthy R. Bioanalysis 5(18)(2013)2277-86.

Google Scholar

[76] Hazir E, Ozcan T. Arab J Sci Eng 44(3) (2019) 2795-809.

Google Scholar