[1]
R. Sreenivasulu, Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry. Independent Journal of Management & Production. (2014), 5(4):966-83.
DOI: 10.14807/ijmp.v5i4.231
Google Scholar
[2]
E. Spišák, L. Kaščák, J. Viňáš, Application of resistance spot welding in car body production. architecture. (2015), 5:12.
DOI: 10.21496/ams.2015.012
Google Scholar
[3]
S.K. Sah, M.A. Bawase, M.R. Saraf, Light-weight materials and their automotive applications. SAE Technical Paper. (2014).
DOI: 10.4271/2014-28-0025
Google Scholar
[4]
Information on https://www.media.volvocars.com/global/en-gb/media/photos/148215/volvo-xc90-body-structure.
Google Scholar
[5]
H. Mohrbacher, Martensitic automotive steel sheet-fundamentals and metallurgical optimization strategies. Advanced Materials Research. (2015), 1063: 130-42, DOI:10.4028/www.scientific.net/ AMR.1063.130
DOI: 10.4028/www.scientific.net/amr.1063.130
Google Scholar
[6]
P.D. Bois, C.C. Chou, B.B Fileta, T.B. Khalil, A.I. King, H.F. Mahmood, H.J. Mertz, J. Wismans, P. Prasad, J.E. Belwafa, Automotive Applications Committee American Iron and Steel Institute Southfield, Michigan. (2004).
Google Scholar
[7]
Y.J. Chao, Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads. J. Eng. Mater. Technol. (2003),125(2):125-32
DOI: 10.1115/1.1555648#
Google Scholar
[8]
J. Halilović, S. Butković, M. Mehmedović, E. Šarić, Investigation of Hardness Profiles and Microstructure Change in the Weld Nugget and HAZ of Resistance Spot Welded Low Carbon Steel. In18th Int'l Research/Expert Conference. (2014), (pp.10-12).
Google Scholar
[9]
S. Aslanlar, The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry. Materials & Design. (2006), 27(2):125-31
DOI: 10.1016/j.matdes.2004.09.025
Google Scholar
[10]
M. Pouranvari, S.P. Marashi, Critical review of automotive steel spot welding: process, structure and properties. Science and Technology of welding and joining. (2013), 18(5):361-403.
DOI: 10.1179/1362171813Y.0000000120
Google Scholar
[11]
H. Lebbal, L. Boukhris, H. Berrekia, A. Ziadi, THERMOMECHANICAL ANALYSIS OF THE RESISTANCE SPOT-WELDING PROCESS. Computational Thermal Sciences: An International Journal. (2018), 10(5).
DOI: 10.1615/ComputThermalScien.2018020490
Google Scholar
[12]
H.M. Mallaradhya, K.M. Vijay, R. Ranganatha, S. Darshan, Resistance spot welding: a review. International Journal of Mechanical and Production Engineering Research and Development. (2018), 8:403-18.
DOI: 10.24247/ijmperdapr201846
Google Scholar
[13]
H. Zhang, J. Senkara, Resistance welding: fundamentals and applications. CRC press. (2011).
DOI: 10.1201/b11752
Google Scholar
[14]
M. Stadler, R. Schnitzer, M. Gruber, K. Steineder, C. Hofer, Influence of the cooling time on the microstructural evolution and mechanical performance of a double pulse resistance spot welded medium-Mn steel. Metals. (2021), 11(2):270.
DOI: 10.3390/met11020270
Google Scholar
[15]
R. Sharma, U. Reisgen, Assessment of mechanical properties in high-strength steel weld metals by means of phase transformation temperature. Welding in the World. (2018), 62(6):1227-36.
DOI: 10.1007/s40194-018-0605-7
Google Scholar
[16]
L. Zhao, Y. Lu, Z. Xiong, L. Sun, J. Qi, X. Yuan, J. Peng, Mechanical properties and nugget evolution in resistance spot welding of Zn–Al–Mg galvanized DC51D steel. High Temperature Materials and Processes. (2023), 42(1):20220243.
DOI: 10.1515/htmp-2022-0243
Google Scholar
[17]
Z. Han, J. Orozco, J.E. Indacochea, C.H. Chen, Resistance spot welding: a heat transfer study. Welding journal. (1989), 68(9):363s-71s.
Google Scholar
[18]
J.R. Gyorki, editor, Signal Conditioning & PC-based Data Acquisition Handbook: A Reference for Analog & Digital Signal Conditioners & PC-based Data Acquisition Systems. IOtech; (2004).
DOI: 10.1201/9781315140766-2
Google Scholar
[19]
S. Beguš, J. Bojkovski, J. Drnovšek, G. Geršak, Magnetic effects on thermocouples. Measurement Science and Technology.(2014) , 25(3):035006.
DOI: 10.1088/0957-0233/25/3/035006
Google Scholar
[20]
M. Kuo, J. Chiang, Weldability study of resistance spot welds and minimum weld button size methodology development for DP steel. SAE transactions. (2004), 1:67-77.
DOI: 10.1179/136217108X325470
Google Scholar
[21]
R.P. Sisodia, "High energy beam welding of advanced high strength steels." PhD Dissertation, (2021), AA6 Appendix.
Google Scholar
[22]
AWS D8.1M, Specification for Automotive Weld Quality-Resistance Spot Welding of Steel, (2013).
Google Scholar
[23]
M. Brozek, Resistance spot welding of steel sheets of different thickness. Eng Rural Dev. (2015), 14:72-7.
DOI: 10.11118/actaun201765030807
Google Scholar
[24]
M. Tamizi, M. Pouranvari, M. Movahedi, Welding metallurgy of martensitic advanced high strength steels during resistance spot welding. Science and Technology of Welding and Joining. (2017), 22(4):327-35.
DOI: 10.1080/13621718.2016.1240979
Google Scholar
[25]
Y. Li, H. Tang, R. Lai, Microstructure and Mechanical Performance of Resistance Spot Welded Martensitic Advanced High Strength Steel. Processes. (2021), 9, 1021.
DOI: 10.3390/pr9061021
Google Scholar
[26]
K. Májlinger, L.T. Katula, B. Varbai, Prediction of the shear tension strength of resistance spot welded thin steel sheets from high-to ultrahigh strength range. Periodica Polytechnica Mechanical Engineering. (2022), 66(1):67-82.
DOI: 10.3311/PPme.18934
Google Scholar
[27]
D.M. Field, K.R. Limmer, B.C. Hornbuckle, On the grain growth kinetics of a low density steel. Metals. (2019), 9(9):997.
DOI: 10.3390/met9090997
Google Scholar