A Novel Synthesis Route of Phenyl Quinoline from Nitrochalcone with Hydrazine Hydrate in the Presence of Pd/C

Article Preview

Abstract:

Quinoline is widely known to have many biological activities. Therefore, the development of the synthesis method of a quinoline derivative framework is a priority. A phenyl quinoline derivative, 6,7-dimethoxy-2-phenylquinoline Q1, has been successfully synthesized via a novel one-pot reaction that involves reduction, cyclization, and followed by dehydration of nitrochalcone derivate, 3-(4,5-dimethoxy-2-nitrophenyl)-1-phenylprop-2-en-1-one C1. The reaction was carried out using 80 % hydrazine hydrate in the presence of 10% Pd/C as a catalyst in an ethanol medium. Target compound Q1 was afforded in a good yield of 69.18% in a relatively short reaction time of ±2 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-86

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F.A. Mohamed, G.E.A. Abuo-rahma, RSC Adv. 10 (2020) 31139–31155.

DOI: 10.1039/d0ra05594h

Google Scholar

[2] G.N. Raju, Asian J. Pharm. Clin. Res. 10 (2017) 8–11.

Google Scholar

[3] C. Benard, F. Zouhiri, M. Normand-Bayle, M. Danet, D. Desmaele, H. Leh, J.-F. Mouscadet, G. Mbemba, C.-M. Thomas, S. Bonnenfant, M. Le Bret, J. D'angelo, Bioorganic Med. Chem. Lett. 14 (2004) 2473–2476.

DOI: 10.1016/j.bmcl.2004.03.005

Google Scholar

[4] J. Mouscadet, D. Desmaële, Molecules 15 (2010) 3048–3078.

Google Scholar

[5] M.M. Ghorab, F.A. Ragab, M.M. Hamed, Arzneimittelforschung 60 (2010) 141–148.

Google Scholar

[6] A.M. Amer, A. Deeb, W.I. El-eraky, S.A. El Awdan, Egypt J. Chem. 77 (2018) 67–77.

Google Scholar

[7] S.A.H. El-feky, Z.K.A. El-samii, N.A. Osman, J. Lashine, M.A. Kamel, H.K. Thabet, Bioorg. Chem. 58 (2014) 104–116.

Google Scholar

[8] M. Ozyanik, S. Demirici, H. Bektas, N. Demirbas, A. Demirbas, S.A. Karaoglu, Turkish J. Chem. 36 (2012) 233–246.

Google Scholar

[9] K.D. Thomas, A. Vasudeva, S. Telkar, I.H. Chowdhury, R. Mahmood, N.K. Pal, G. Row, E. Sumesh, Eur. J. Med. Chem. 46 (2011) 5283–5292.

Google Scholar

[10] M. Mandewale, U. Patil, S. Pancham, K. Mahavidyalaya, R. Yamgar, Beni-Suef Univ. J. Basic Appl. 6 (2017) 352–361.

Google Scholar

[11] N. Shobeiri, M. Rashedi, F. Mosaffa, A. Zarghi, Eur. J. Med. Chem. 114 (2016) 14–23.

Google Scholar

[12] S. Jain, V. Chandra, P.K. Jain, K. Pathak, D. Pathak, A. Vaidya, Arab. J. Chem. 12 (2016) 4920–4946.

Google Scholar

[13] B. Vinindwa, G.A. Dziwornu, W. Masamba, Molecules 26 (2021) 1–14.

Google Scholar

[14] L. Persoons, E. Vanderlinden, L. Vangeel, X. Wang, N. Dan, T. Do, S.C. Foo, P. Leyssen, J. Neyts, D. Jochmans, D. Schols, S. De Jonghe, Antiviral Res. 193 (2021) 105127.

DOI: 10.1016/j.antiviral.2021.105127

Google Scholar

[15] J. Zhao, Y.Zhang, M.Wang, Q. Liu, X. Lei, M. Wu, S. Guo, ACS Infect. Dis 7(2021)1535-1544.

Google Scholar

[16] R.S. Varma, R.K. Saini, Synlett (1997) 857–858.

Google Scholar

[17] J.A. Donnelly, D.F. Farrell, J. Org. Chem. 55 (1990) 1757–1761.

Google Scholar

[18] Y. Xia, Z. Yang, P. Xia, T. Hackl, E. Hamel, A. Mauger, J. Wu, J. Med. Chem. 44 (2001) 3932–3936.

DOI: 10.1021/jm0101085

Google Scholar

[19] T.K. Koprulu, S. Okten, S. Tekin, O. Cakmak, J. Biochem Mol Toxicol. 33 (2019) 1–8.

Google Scholar

[20] A.I.R.N.A. Barros, A.M.S. Silva, Tetrahedron Lett. 44 (2003) 5893–5896.

Google Scholar

[21] R. Han, S. Chen, S.J. Lee, X.W. Fang Qi, B.H. Kim, Heterocycles 68 (2006) 1675–1684.

Google Scholar

[22] A. Patti, S. Pedotti, Tetrahedron 66 (2010) 5607–5611.

Google Scholar

[23] F. Li, B. Frett, H.Y. Li, Synlett 25 (2014) 1403–1408.

Google Scholar

[24] H.K. Kadam, S.G. Tilve, RSC Adv. 5 (2015) 83391–83407.

DOI: 10.1039/c5ra10076c

Google Scholar

[25] A.A.T. Suma, T.D. Wahyuningsih, D. Pranowo, Mater. Sci. Forum 901 (2017) 124–132.

Google Scholar

[26] B. Tamami, H. Yeganeh, Polymer (Guildf). 42 (2001) 415–420.

Google Scholar

[27] Q. Wang, M. Wang, H.J. Li, S. Zhu, Y. Liu, Y.C. Wu, Synthesis (Stuttg). 48 (2016) 3985–3995.

Google Scholar

[28] S. Dehghanpour, F. Afshariazar, J. Assoud, Polyhedron 35 (2012) 69–76.

Google Scholar

[29] D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, 2001.

Google Scholar

[30] J. Trilleras, D.J. Pacheco, A. Pérez-Gamboa, J. Quiroga, A. Ortiz, J. Gálvez, M. Nogueras, J. Cobo, Appl. Sci. 7 (2017) 967.

DOI: 10.3390/app7100967

Google Scholar

[31] C. Wu, J. Wang, J. Shen, C. Zhang, Z. Wu, H. Zhou, Tetrahedron 73 (2017) 5715–5719.

Google Scholar

[32] A.I.. R.N.A. Barros, A.F.R. Dias, A.M.S. Silva, Monatshefte Fur Chemie 138 (2007) 585–594.

Google Scholar

[33] E. Diez-cecilia, B. Kelly, I. Rozas, Tetrahedron Lett. 52 (2011) 6702–6704.

Google Scholar