[1]
V. C. Hoang, M. Hassan, and V. G. Gomes, "Coal derived carbon nanomaterials – Recent advances in synthesis and applications," Applied Materials Today, vol. 12, p.342–358, Sep. 2018.
DOI: 10.1016/j.apmt.2018.06.007
Google Scholar
[2]
P. G. Hatcher and D. J. Clifford, "The organic geochemistry of coal: from plant materials to coal".
Google Scholar
[3]
T. Das, H. Chauhan, S. Deka, S. Chaudhary, R. Boruah, and B. K. Saikia, "Promising carbon nanosheet-based supercapacitor electrode materials from low-grade coals," Microporous and Mesoporous Materials, vol. 253, p.80–90, Nov. 2017.
DOI: 10.1016/j.micromeso.2017.06.030
Google Scholar
[4]
P. Barré, O. Fernandez-Ugalde, I. Virto, B. Velde, and C. Chenu, "Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects," Geoderma, vol. 235–236, p.382–395, Dec. 2014, doi: 10.1016/j.geoderma. 2014.07.029.
DOI: 10.1016/j.geoderma.2014.07.029
Google Scholar
[5]
L. G. Turner and K. M. Steel, "A study into the effect of cleat demineralisation by hydrochloric acid on the permeability of coal," Journal of Natural Gas Science and Engineering, vol. 36, p.931–942, Nov. 2016.
DOI: 10.1016/j.jngse.2016.11.003
Google Scholar
[6]
F. Rubiera et al., "Coal structure and reactivity changes induced by chemical demineralisation," Fuel Processing Technology, vol. 79, no. 3, p.273–279, Dec. 2002.
DOI: 10.1016/S0378-3820(02)00185-6
Google Scholar
[7]
K. M. Steel and J. W. Patrick, "The production of ultra clean coal by chemical demineralisation," 2001.
Google Scholar
[8]
F. Syarifuddin et al., "Effect of acid leaching on upgrading the graphite concentrate from West Kalimantan (Indonesia)," presented at the 2ND PADJADJARAN INTERNATIONAL PHYSICS SYMPOSIUM 2015 (PIPS-2015): Materials Functionalization and Energy Conservations, Jatinangor, Indonesia, 2016, p.050022.
DOI: 10.1063/1.4941905
Google Scholar
[9]
V. Gómez-Serrano, M. C. Fernández-González, E. M. Cuerda-Correa, A. Macías-García, M. F. Alexandre-Franco, and M. L. Rojas-Cervantes, "Physico-chemical properties of low-rank coals," Powder Technology, vol. 148, no. 1, p.38–42, Oct. 2004, doi: 10.1016/j.powtec. 2004.09.018.
DOI: 10.1016/j.powtec.2004.09.018
Google Scholar
[10]
B. Manoj and E. C. Daniel, "Bio-Demineralization of Coal by Fungi," vol. 11.
Google Scholar
[11]
"Biodegradation of Coal Minerals by Gluconic Acid and its Effect on the Stacking Structure of Carbon: An Investigation," J Bioremed Biodeg, vol. 06, no. 04, 2015.
DOI: 10.4172/2155-6199.1000306
Google Scholar
[12]
B. Manoj and E. C. Daniel, "Bio-Demineralization of Coal by Fungi," vol. 11.
Google Scholar
[13]
P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu, and B. D. Pandey, "Demineralization of low grade coal – A review," Renewable and Sustainable Energy Reviews, vol. 41, p.745–761, Jan. 2015.
DOI: 10.1016/j.rser.2014.08.072
Google Scholar
[14]
R. Addison, R. K. Harrison, D. H. Land, B. R. Young, A. E. Davis, and T. K. Smith, "Volcanogenic tonsteins from tertiary coal measures, East Kalimantan, Indonesia," International Journal of Coal Geology, vol. 3, no. 1, p.1–30, Aug. 1983.
DOI: 10.1016/0166-5162(83)90011-3
Google Scholar
[15]
S. Widodo, W. Oschmann, A. Bechtel, R. F. Sachsenhofer, K. Anggayana, and W. Puettmann, "Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions," International Journal of Coal Geology, vol. 81, no. 3, p.151–162, Mar. 2010.
DOI: 10.1016/j.coal.2009.12.003
Google Scholar
[16]
X. Li, Z. Liu, J. Qian, and D. Zhou, "Analysis on the Changes of Functional Groups after Coal Dust Explosion at Different Concentrations Based on FTIR and XRD," Combustion Science and Technology, vol. 193, no. 14, p.2482–2504, Oct. 2021.
DOI: 10.1080/00102202.2020.1746289
Google Scholar
[17]
H. Huai, A. F. Gaines, and C. D. Flint, "Scanning electron microscopy of treated bituminous coals," Fuel Processing Technology, vol. 32, no. 1–2, p.25–37, Nov. 1992.
DOI: 10.1016/0378-3820(92)90004-A
Google Scholar
[18]
M. Karczewski and S. Porada, "Physically mixed black liquor as a catalytic additive for pressurised steam gasification of different rank bituminous coals," Energy, vol. 263, p.125781, Jan. 2023.
DOI: 10.1016/j.energy.2022.125781
Google Scholar
[19]
P. Chen, P. W.-J. Yang, and P. R. Griffiths, "Effect of preheating on chemical structure and infrared spectra of Yanzhou coal," Fuel, vol. 64, no. 3, p.307–312, Mar. 1985.
DOI: 10.1016/0016-2361(85)90415-6
Google Scholar
[20]
M. J. Iglesias, J. C. Del Rı́o, F. Laggoun-Défarge, M. J. Cuesta, and I. Suárez-Ruiz, "Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation," Journal of Analytical and Applied Pyrolysis, vol. 62, no. 1, p.1–34, Jan. 2002.
DOI: 10.1016/S0165-2370(00)00209-6
Google Scholar
[21]
H. Zhang, K. Li, J. Sun, Z. Sun, L. Yuan, and Q. Liu, "The structural evolution and mutation of graphite derived from coal under the influence of natural igneous plutonic intrusion," Fuel, vol. 322, p.124066, Aug. 2022.
DOI: 10.1016/j.fuel.2022.124066
Google Scholar
[22]
M.I. Ardiansyah, A.H. Hamdani, and A.D. Haryanto, "Relationship Between Molecule Structure and Coal Maturity of Bayah Formation Based on X-Ray Diffraction Analysis," vol. 5, no. 3, 2021.
DOI: 10.24198/gsag.v5i3.38349
Google Scholar
[23]
J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, "Graphene Oxide Dispersions in Organic Solvents," Langmuir, vol. 24, no. 19, p.10560–10564, Oct. 2008.
DOI: 10.1021/la801744a
Google Scholar
[24]
J. Jiang, S. Zhang, P. Longhurst, W. Yang, and S. Zheng, "Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 255, p.119724, Jul. 2021.
DOI: 10.1016/j.saa.2021.119724
Google Scholar
[25]
M. Yang, B. Zou, C. Jiang, L. Ma, and Y. Yang, "Elucidation of elemental and structural changes in high-volatile bituminous coal during thermal treatment by X-ray diffraction and terahertz time-domain spectroscopy," Fuel, vol. 293, p.120410, Jun. 2021.
DOI: 10.1016/j.fuel.2021.120410
Google Scholar
[26]
Y. Shao, M. Li, P. Liu, X. Cui, Y. Li, and Y. Meng, "The structural evolution characteristics for high volatile bituminous coal by in-situ heating in electronical microscope," Journal of Analytical and Applied Pyrolysis, vol. 168, p.105751, Nov. 2022.
DOI: 10.1016/j.jaap.2022.105751
Google Scholar