Progress in Bulk 4H SiC Crystal Growth for 150 mm Wafer Production

Article Preview

Abstract:

The thermoelastic stress, mechanical properties and defect content of bulk 4H n-type SiC crystals were investigated following adjustments to the PVT growth cell configuration that led to a 40% increase in growth rate. The resulting 150 mm wafers were compared with wafers produced from a control process in terms of wafer bow and warp, and dislocation density. Wafer shape was found to be comparable among the processes, indicating minimal impact on internal stress. Threading edge and threading screw dislocation densities increased and decreased, respectively, while basal plane dislocation densities were unaffected by the increase in growth rate. Loss of wafer planar stability was observed in certain cases. The elastic modulus was measured to be in the range of approximately 420-450 GPa for selected stable and unstable wafers, and was found to correspond to resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

37-43

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Anzalone, N. Piluso, G. Litrico, S. Lorenti, G. Arena, S. Coffa, F. La Via, Stress relaxation mechanism after thinning process on 4H-SiC substrate, Mater. Sci. Forum 924, (2018) 535-538.

DOI: 10.4028/www.scientific.net/msf.924.535

Google Scholar

[2] S.I. Maximenko, J.A. Freitas, Jr., R.L. Myers-Ward, K.-K. Lew, B.L. VanMil, C.R. Eddy, Jr., D.K. Gaskill, P.G. Muzykov, T.S. Sudarshan, Effect of threading screw and edge dislocations on transport properties of 4H–SiC homoepitaxial layers, J. Appl. Phys. 108 (2010) 013708.

DOI: 10.1063/1.3448230

Google Scholar

[3] H. Lendenmann, F. Dahlquist, J.P. Bergman, H. Bleichner, C. Hallin, High-Power SiC diodes: characteristics, reliability, and relation to material defects, Mater. Sci. Forum 389-393 (2002) 1259-1264.

DOI: 10.4028/www.scientific.net/msf.389-393.1259

Google Scholar

[4] R. Ma, H. Zhang, V. Prasad, M. Dudley, Growth kinetics and thermal stress in the sublimation growth of silicon carbide, Cryst. Growth Des. 2 (2002) 213-220.

DOI: 10.1021/cg015572p

Google Scholar

[5] K. Moeggenborg, T. Kegg, C. Parfeniuk, T. Stoney, J. Quast, Effect of surface damage on SiC wafer shape, Mater. Sci. Forum 821-823 (2015) 545-548.

DOI: 10.4028/www.scientific.net/msf.821-823.545

Google Scholar

[6] A. Nawaz, W.G. Mao, C. Lu, Y.G. Shen, Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC, J. Mech. Behav. Biomed. 66, (2017) 172-180.

DOI: 10.1016/j.jmbbm.2016.11.013

Google Scholar

[7] Md. Nuruzzaman, M.A. Islam, M.A. Alam, M.A.H. Shah, A.M.M.T. Karim, Structural, elastic and electronic properties of 2H- and 4H-SiC, Int. Journal of Engineering Research and Applications 5, (2015) 48-52.

Google Scholar

[8] A. Datye, L. Li, W. Zhang, Y. Wei, Y. Gao, G. M. Pharr, Extraction of anisotropic mechanical properties from nanoindentation of SiC-6H single crystals, J. Appl. Mech. 83 (2016) 091003-1.

DOI: 10.1115/1.4033790

Google Scholar

[9] H.K.E. Latha, A. Udayakumar, V. S. Prasad, The effect of nitrogen doping on the elastic modulus and hardness of 3C-SiC thin films deposited using methyltrichlorosilane, Mater. Res. Expr. 1, (2014) 015902.

DOI: 10.1088/2053-1591/1/1/015902

Google Scholar

[10] Y. Cui, X. Hu, K. Yang, X. Yang, X. Xie, L. Xiao, X. Xu, Influence of nitrogen concentrations on the lattice constants and resistivities of n‑Type 4H-SiC single crystals, Cryst. Growth Des. 15, (2015) 3131-3136.

DOI: 10.1021/cg501216d

Google Scholar

[11] Y. Yang, J. Guo, B. Raghothamachar, X. Chan, T. Kim, M. Dudley, Characterization of strain due to nitrogen doping concentration variations in heavy doped 4H-SiC, J. Electron. Mater. 47, (2018) 938-943.

DOI: 10.1007/s11664-017-5846-5

Google Scholar

[12] M. Jiang, J.W. Zheng, H.Y. Xiao, Z.J. Liu, X.T. Zu, A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC, Sci. Rep. 7, (2017) 1-14.

DOI: 10.1038/s41598-017-09562-x

Google Scholar

[13] N. T. Son, X. T. Trinh, L. S. Løvlie, B. G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, E. Janzen, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett. 109 (2012) 187603.

DOI: 10.1103/physrevlett.109.187603

Google Scholar

[14] I. Pintilie, L. Pintilie, K. Irmscher, B. Thomas, Formation of the Z1,2 deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation, Appl. Phys. Lett. 81 (2002) 4841.

DOI: 10.1063/1.1529314

Google Scholar

[15] H. Wang, S. Sun, M. Dudley, S. Byrappa, F. Wu, B. Raghothamachar, G. Chung, E.K. Sanchez, S. G. Mueller, D. Hansen, M. J. Loboda, Quantitative comparison between dislocation densities in offcut 4H-SiC wafers measured using synchrotron x-ray topography and molten KOH etching, J. Electron. Mater. 42, (2013) 794-798.

DOI: 10.1007/s11664-013-2527-x

Google Scholar