[1]
R. Anzalone, N. Piluso, G. Litrico, S. Lorenti, G. Arena, S. Coffa, F. La Via, Stress relaxation mechanism after thinning process on 4H-SiC substrate, Mater. Sci. Forum 924, (2018) 535-538.
DOI: 10.4028/www.scientific.net/msf.924.535
Google Scholar
[2]
S.I. Maximenko, J.A. Freitas, Jr., R.L. Myers-Ward, K.-K. Lew, B.L. VanMil, C.R. Eddy, Jr., D.K. Gaskill, P.G. Muzykov, T.S. Sudarshan, Effect of threading screw and edge dislocations on transport properties of 4H–SiC homoepitaxial layers, J. Appl. Phys. 108 (2010) 013708.
DOI: 10.1063/1.3448230
Google Scholar
[3]
H. Lendenmann, F. Dahlquist, J.P. Bergman, H. Bleichner, C. Hallin, High-Power SiC diodes: characteristics, reliability, and relation to material defects, Mater. Sci. Forum 389-393 (2002) 1259-1264.
DOI: 10.4028/www.scientific.net/msf.389-393.1259
Google Scholar
[4]
R. Ma, H. Zhang, V. Prasad, M. Dudley, Growth kinetics and thermal stress in the sublimation growth of silicon carbide, Cryst. Growth Des. 2 (2002) 213-220.
DOI: 10.1021/cg015572p
Google Scholar
[5]
K. Moeggenborg, T. Kegg, C. Parfeniuk, T. Stoney, J. Quast, Effect of surface damage on SiC wafer shape, Mater. Sci. Forum 821-823 (2015) 545-548.
DOI: 10.4028/www.scientific.net/msf.821-823.545
Google Scholar
[6]
A. Nawaz, W.G. Mao, C. Lu, Y.G. Shen, Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC, J. Mech. Behav. Biomed. 66, (2017) 172-180.
DOI: 10.1016/j.jmbbm.2016.11.013
Google Scholar
[7]
Md. Nuruzzaman, M.A. Islam, M.A. Alam, M.A.H. Shah, A.M.M.T. Karim, Structural, elastic and electronic properties of 2H- and 4H-SiC, Int. Journal of Engineering Research and Applications 5, (2015) 48-52.
Google Scholar
[8]
A. Datye, L. Li, W. Zhang, Y. Wei, Y. Gao, G. M. Pharr, Extraction of anisotropic mechanical properties from nanoindentation of SiC-6H single crystals, J. Appl. Mech. 83 (2016) 091003-1.
DOI: 10.1115/1.4033790
Google Scholar
[9]
H.K.E. Latha, A. Udayakumar, V. S. Prasad, The effect of nitrogen doping on the elastic modulus and hardness of 3C-SiC thin films deposited using methyltrichlorosilane, Mater. Res. Expr. 1, (2014) 015902.
DOI: 10.1088/2053-1591/1/1/015902
Google Scholar
[10]
Y. Cui, X. Hu, K. Yang, X. Yang, X. Xie, L. Xiao, X. Xu, Influence of nitrogen concentrations on the lattice constants and resistivities of n‑Type 4H-SiC single crystals, Cryst. Growth Des. 15, (2015) 3131-3136.
DOI: 10.1021/cg501216d
Google Scholar
[11]
Y. Yang, J. Guo, B. Raghothamachar, X. Chan, T. Kim, M. Dudley, Characterization of strain due to nitrogen doping concentration variations in heavy doped 4H-SiC, J. Electron. Mater. 47, (2018) 938-943.
DOI: 10.1007/s11664-017-5846-5
Google Scholar
[12]
M. Jiang, J.W. Zheng, H.Y. Xiao, Z.J. Liu, X.T. Zu, A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC, Sci. Rep. 7, (2017) 1-14.
DOI: 10.1038/s41598-017-09562-x
Google Scholar
[13]
N. T. Son, X. T. Trinh, L. S. Løvlie, B. G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, E. Janzen, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett. 109 (2012) 187603.
DOI: 10.1103/physrevlett.109.187603
Google Scholar
[14]
I. Pintilie, L. Pintilie, K. Irmscher, B. Thomas, Formation of the Z1,2 deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation, Appl. Phys. Lett. 81 (2002) 4841.
DOI: 10.1063/1.1529314
Google Scholar
[15]
H. Wang, S. Sun, M. Dudley, S. Byrappa, F. Wu, B. Raghothamachar, G. Chung, E.K. Sanchez, S. G. Mueller, D. Hansen, M. J. Loboda, Quantitative comparison between dislocation densities in offcut 4H-SiC wafers measured using synchrotron x-ray topography and molten KOH etching, J. Electron. Mater. 42, (2013) 794-798.
DOI: 10.1007/s11664-013-2527-x
Google Scholar