[1]
Applications | Automotive., [Online]. Available: https://www.genesicsemi.com/ applications/. [Accessed: 27-Aug-2019].
Google Scholar
[2]
E-Series Automotive MOSFETs and Diodes | Wolfspeed,, 2018. [Online]. Available: https://www.wolfspeed.com/e-series. [Accessed: 27-Aug-2019].
Google Scholar
[3]
A. Marshaly, The potential of Silicon carbide (SiC) for automotive applications,, 2017. [Online]. Available: https://www.eenewseurope.com/design-center/potential-silicon-carbide-sic-automotive-applications. [Accessed: 27-Aug-2019].
Google Scholar
[4]
ON Semiconductor Announces SiC Diodes for Demanding Automotive Applications," 2018. [Online]. Available: https://www.onsemi.com/PowerSolutions/newsItem.do, article=4112. [Accessed: 27-Aug-2019].
Google Scholar
[5]
Automotive SiC Diodes - STMicroelectronics., [Online]. Available: https://www.stmicroelectronics.com.cn/en/automotive-analog-and-power/automotive-sic-diodes.html. [Accessed: 27-Aug-2019].
Google Scholar
[6]
SiC for automotive applications., [Online]. Available: https://www.infineon.com/cms/en/ product/promopages/sicatv/. [Accessed: 27-Aug-2019].
Google Scholar
[7]
D. Johannesson, M. Nawaz, K. Jacobs, S. Norrga, and H. P. Nee, Potential of ultra-high voltage silicon carbide semiconductor devices,, in WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications, 2016, p.253–258.
DOI: 10.1109/wipda.2016.7799948
Google Scholar
[8]
Y. Gao, A. Q. Huang, S. Krishnaswami, J. Richmond, and A. K. Agarwal, Comparison of Static and Switching Characteristics of 1200 V 4H-SiC BJT and 1200 V Si-IGBT,, IEEE Trans. Ind. Appl., vol. 44, no. 3, p.887–893, (2008).
DOI: 10.1109/tia.2008.921408
Google Scholar
[9]
S. Sundaresan, S. Jeliazkov, B. Grummel, and R. Singh, 10 kV SiC BJTs — Static, switching and reliability characteristics," in 2013 25th International Symposium on Power Semiconductor Devices & IC,s (ISPSD), 2013, p.303–306.
DOI: 10.1109/ispsd.2013.6694409
Google Scholar
[10]
Q. Zhang, C. Jonas, M. O'Loughlin, R. Callanan, A. Agarwal, and C. Scozzie, A 10-kV monolithic darlington transistor with βforced of 336 in 4H-SiC,, IEEE Electron Device Lett., vol. 30, no. 2, p.142–144, (2009).
DOI: 10.1109/led.2008.2009953
Google Scholar
[11]
D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide,, IEEE Electron Device Lett., vol. 31, no. 7, p.710–712, Jul. (2010).
DOI: 10.1109/led.2010.2047239
Google Scholar
[12]
D. Peftitsis and J. Rabkowski, Gate and Base Drivers for Silicon Carbide Power Transistors: An Overview,, IEEE Trans. Power Electron., vol. 31, no. 10, p.1–1, (2015).
DOI: 10.1109/tpel.2015.2510425
Google Scholar
[13]
D. Tournier, P. Bevilacqua, P. Brosselard, D. Planson, and B. Allard, SiC BJT driver applied to a 2 kW inverter: Performances and limitations,, 2010 6th Int. Conf. Integr. Power Electron. Syst. CIPS 2010, p.1–6, (2011).
DOI: 10.4028/www.scientific.net/msf.645-648.1155
Google Scholar
[14]
G. Tolstoy, D. Peftitsis, J. Rabkowski, P. R. Palmer, and H.-P. Nee, A Discretized Proportional Base Driver for Silicon Carbide Bipolar Junction Transistors,, IEEE Trans. Power Electron., vol. 29, no. 5, p.2408–2417, May (2014).
DOI: 10.1109/tpel.2013.2274331
Google Scholar
[15]
B. Asllani et al., Advanced Electrical Characterisation of High Voltage 4H-SiC PiN Diodes,, Mater. Sci. Forum, vol. 963, p.567–571, Jul. (2019).
DOI: 10.4028/www.scientific.net/msf.963.567
Google Scholar
[16]
B. Choucoutou, L. V. Phung, P. Brosselard, M. Mermet-guyennet, and D. Planson, Étude en simulation et conception d'un transistor bipolaire ( BJT ) 10 kV en 4H-SiC,, in Symposium de Genie Electrique, Jun 2016, Grenoble, France, (2016).
Google Scholar
[17]
GA15IDDJT22-FR4,, 2015. [Online]. Available: http://www.genesicsemi.com/technical_ support/Evaluation_Boards/GA15IDDJT22-FR4.pdf. [Accessed: 29-Aug-2019].
Google Scholar
[18]
SiC MOSFET Isolated Gate Driver., [Online]. Available: https://www.wolfspeed.com/ downloads/dl/file/id/151/product/0/sic_mosfet_isolated_gate_driver.pdf.
Google Scholar
[19]
M. K. Das et al., 10 kV, 120 A SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications,, in 2011 IEEE Energy Conversion Congress and Exposition, 2011, p.2689–2692.
DOI: 10.1109/ecce.2011.6064129
Google Scholar
[20]
Q. C. J. Zhang et al., 10 kV, 10 A Bipolar Junction Transistors and Darlington Transistors on 4H-SiC,, Mater. Sci. Forum, vol. 645–648, p.1025–1028, Apr. (2010).
DOI: 10.4028/www.scientific.net/msf.645-648.1025
Google Scholar
[21]
A. Salemi, H. Elahipanah, K. Jacobs, C.-M. Zetterling, and M. Ostling, 15 kV-Class Implantation-Free 4H-SiC BJTs With Record High Current Gain,, IEEE Electron Device Lett., vol. 39, no. 1, p.63–66, Jan. (2018).
DOI: 10.1109/led.2017.2774139
Google Scholar
[22]
H. Miyake, T. Okuda, H. Niwa, T. Kimoto, and J. Suda, 21-kV SiC BJTs with space-modulated junction termination extension,, IEEE Electron Device Lett., vol. 33, no. 11, p.1598–1600, (2012).
DOI: 10.1109/led.2012.2215004
Google Scholar
[23]
H. Miyake, T. Kimoto, and J. Suda, 4H-SiC BJTs with record current gains of 257 on (0001) and 335 on (000-1),, IEEE Electron Device Lett., vol. 32, no. 7, p.841–843, Jul. (2011).
DOI: 10.1109/led.2011.2142291
Google Scholar
[24]
P. A. Ivanov et al., High hole lifetime (3.8μs) in 4H-S1C diodes with 5.5 kV blocking voltage,, Electron. Lett., vol. 35, no. 16, p.1382–1383, (1999).
DOI: 10.1049/el:19990897
Google Scholar