Static and Switching Characteristics of 10 kV-Class Silicon Carbide Bipolar Junction Transistors and Darlingtons

Article Preview

Abstract:

This paper reports the device design, fabrication and characterisation of 10 kV-class Bipolar Junction Transistor (BJT). Manufactured devices have been packaged in single BJT, two paralleled BJTs and Darlington configurations. The static and switching characteristics of the resulting devices have been measured. The BJTs (2.4mm² active area) show a specific on-resistance as low as 198 mΩ·cm² at 100 A/cm² and room temperature for a βMax of 9.6, whereas the same active area Darlington beats the unipolar limit with a specific on-resistance of 102 mΩ·cm² at 200 A/cm² (β=11) for a βMax of 69. Double pulse tests reveal state of the art switching with very sharp dV/dt and di/dt. Turn-on is operated at less than 100 ns for an EON lower than 4mJ, whereas the turn-off takes longer times due to tail current resulting in EOFF of 17.2 mJ and 50 mJ for the single BJT and Darlington respectively when operated at high current density. Excellent parallelisation have been achieved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

923-932

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Applications | Automotive., [Online]. Available: https://www.genesicsemi.com/ applications/. [Accessed: 27-Aug-2019].

Google Scholar

[2] E-Series Automotive MOSFETs and Diodes | Wolfspeed,, 2018. [Online]. Available: https://www.wolfspeed.com/e-series. [Accessed: 27-Aug-2019].

Google Scholar

[3] A. Marshaly, The potential of Silicon carbide (SiC) for automotive applications,, 2017. [Online]. Available: https://www.eenewseurope.com/design-center/potential-silicon-carbide-sic-automotive-applications. [Accessed: 27-Aug-2019].

Google Scholar

[4] ON Semiconductor Announces SiC Diodes for Demanding Automotive Applications," 2018. [Online]. Available: https://www.onsemi.com/PowerSolutions/newsItem.do, article=4112. [Accessed: 27-Aug-2019].

Google Scholar

[5] Automotive SiC Diodes - STMicroelectronics., [Online]. Available: https://www.stmicroelectronics.com.cn/en/automotive-analog-and-power/automotive-sic-diodes.html. [Accessed: 27-Aug-2019].

Google Scholar

[6] SiC for automotive applications., [Online]. Available: https://www.infineon.com/cms/en/ product/promopages/sicatv/. [Accessed: 27-Aug-2019].

Google Scholar

[7] D. Johannesson, M. Nawaz, K. Jacobs, S. Norrga, and H. P. Nee, Potential of ultra-high voltage silicon carbide semiconductor devices,, in WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications, 2016, p.253–258.

DOI: 10.1109/wipda.2016.7799948

Google Scholar

[8] Y. Gao, A. Q. Huang, S. Krishnaswami, J. Richmond, and A. K. Agarwal, Comparison of Static and Switching Characteristics of 1200 V 4H-SiC BJT and 1200 V Si-IGBT,, IEEE Trans. Ind. Appl., vol. 44, no. 3, p.887–893, (2008).

DOI: 10.1109/tia.2008.921408

Google Scholar

[9] S. Sundaresan, S. Jeliazkov, B. Grummel, and R. Singh, 10 kV SiC BJTs — Static, switching and reliability characteristics," in 2013 25th International Symposium on Power Semiconductor Devices & IC,s (ISPSD), 2013, p.303–306.

DOI: 10.1109/ispsd.2013.6694409

Google Scholar

[10] Q. Zhang, C. Jonas, M. O'Loughlin, R. Callanan, A. Agarwal, and C. Scozzie, A 10-kV monolithic darlington transistor with βforced of 336 in 4H-SiC,, IEEE Electron Device Lett., vol. 30, no. 2, p.142–144, (2009).

DOI: 10.1109/led.2008.2009953

Google Scholar

[11] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide,, IEEE Electron Device Lett., vol. 31, no. 7, p.710–712, Jul. (2010).

DOI: 10.1109/led.2010.2047239

Google Scholar

[12] D. Peftitsis and J. Rabkowski, Gate and Base Drivers for Silicon Carbide Power Transistors: An Overview,, IEEE Trans. Power Electron., vol. 31, no. 10, p.1–1, (2015).

DOI: 10.1109/tpel.2015.2510425

Google Scholar

[13] D. Tournier, P. Bevilacqua, P. Brosselard, D. Planson, and B. Allard, SiC BJT driver applied to a 2 kW inverter: Performances and limitations,, 2010 6th Int. Conf. Integr. Power Electron. Syst. CIPS 2010, p.1–6, (2011).

DOI: 10.4028/www.scientific.net/msf.645-648.1155

Google Scholar

[14] G. Tolstoy, D. Peftitsis, J. Rabkowski, P. R. Palmer, and H.-P. Nee, A Discretized Proportional Base Driver for Silicon Carbide Bipolar Junction Transistors,, IEEE Trans. Power Electron., vol. 29, no. 5, p.2408–2417, May (2014).

DOI: 10.1109/tpel.2013.2274331

Google Scholar

[15] B. Asllani et al., Advanced Electrical Characterisation of High Voltage 4H-SiC PiN Diodes,, Mater. Sci. Forum, vol. 963, p.567–571, Jul. (2019).

DOI: 10.4028/www.scientific.net/msf.963.567

Google Scholar

[16] B. Choucoutou, L. V. Phung, P. Brosselard, M. Mermet-guyennet, and D. Planson, Étude en simulation et conception d'un transistor bipolaire ( BJT ) 10 kV en 4H-SiC,, in Symposium de Genie Electrique, Jun 2016, Grenoble, France, (2016).

Google Scholar

[17] GA15IDDJT22-FR4,, 2015. [Online]. Available: http://www.genesicsemi.com/technical_ support/Evaluation_Boards/GA15IDDJT22-FR4.pdf. [Accessed: 29-Aug-2019].

Google Scholar

[18] SiC MOSFET Isolated Gate Driver., [Online]. Available: https://www.wolfspeed.com/ downloads/dl/file/id/151/product/0/sic_mosfet_isolated_gate_driver.pdf.

Google Scholar

[19] M. K. Das et al., 10 kV, 120 A SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications,, in 2011 IEEE Energy Conversion Congress and Exposition, 2011, p.2689–2692.

DOI: 10.1109/ecce.2011.6064129

Google Scholar

[20] Q. C. J. Zhang et al., 10 kV, 10 A Bipolar Junction Transistors and Darlington Transistors on 4H-SiC,, Mater. Sci. Forum, vol. 645–648, p.1025–1028, Apr. (2010).

DOI: 10.4028/www.scientific.net/msf.645-648.1025

Google Scholar

[21] A. Salemi, H. Elahipanah, K. Jacobs, C.-M. Zetterling, and M. Ostling, 15 kV-Class Implantation-Free 4H-SiC BJTs With Record High Current Gain,, IEEE Electron Device Lett., vol. 39, no. 1, p.63–66, Jan. (2018).

DOI: 10.1109/led.2017.2774139

Google Scholar

[22] H. Miyake, T. Okuda, H. Niwa, T. Kimoto, and J. Suda, 21-kV SiC BJTs with space-modulated junction termination extension,, IEEE Electron Device Lett., vol. 33, no. 11, p.1598–1600, (2012).

DOI: 10.1109/led.2012.2215004

Google Scholar

[23] H. Miyake, T. Kimoto, and J. Suda, 4H-SiC BJTs with record current gains of 257 on (0001) and 335 on (000-1),, IEEE Electron Device Lett., vol. 32, no. 7, p.841–843, Jul. (2011).

DOI: 10.1109/led.2011.2142291

Google Scholar

[24] P. A. Ivanov et al., High hole lifetime (3.8μs) in 4H-S1C diodes with 5.5 kV blocking voltage,, Electron. Lett., vol. 35, no. 16, p.1382–1383, (1999).

DOI: 10.1049/el:19990897

Google Scholar