Assessment of Stone Ash as a Fine Aggregate Material to Meet the Value of Normal Concrete Compressive Strength

Article Preview

Abstract:

The concrete industry in Indonesia is very advanced and developing, so the use of construction materials is increasing. The need for other materials as a substitute for fine aggregate for the manufacture of concrete, namely stone ash comes from the stone slate industry waste. 20% stone ash, 80% sand) and (30% rock ash, 70% sand) with a concrete quality target of Fc' 17.5 Mpa. The method used is the laboratory experimental method referring to the SNI standard. The results showed that the use of stone ash (AB) as a normal concrete mixture affected the compressive strength of concrete. The higher the percentage of stone ash (AB), then the value of the compressive strength of concrete increases. The value of the compressive strength of concrete from stone ash (AB) at the composition of AB 10%, AB 20% and AB 30% was 173.50 kg/cm2, 235.11 kg/cm2 and 239.88 kg/cm2 while normal concrete was 18.59 MPa at 28 days.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1091)

Pages:

151-159

Citation:

Online since:

June 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Suprayitno and R.A.A. Soemitro, Prelimanery Reflexion on Basic Principle of Infrastructure Asset Management, J. Manaj. Aset Infrastruktur. 2 (2018) 1-9.

DOI: 10.12962/j26151847.v2i1.3763

Google Scholar

[2] T.Y. Tu, Y.Y. Chen, and C.L. Hwang, Properties of HPC with recycled aggregates, Cem. Concr. Res. 36 (2006) 943-950.

Google Scholar

[3] A. Gastaldini, M. Hengen, M. Gastaldini, F.D. Amaral, M. Antolini, and T. Coletto, The use of water treatment plant sludge ash as a mineral addition, Constr. Build. Mater. 94 (2015) 513-520.

DOI: 10.1016/j.conbuildmat.2015.07.038

Google Scholar

[4] J. Bolomey, Granulation et prévision de la résistance probable des bétons, Travaux. 19 (1935) 228-232.

Google Scholar

[5] T. Powers and T. Brownyard, Studies of the Physical Properties of Hardened Portland Cement Paste, J. Proc. 43 (1946) 101-132.

Google Scholar

[6] K. Tjokrodimuljo, Concrete Technology, Nafiri Publishers, Yogyakarta, 2007.

Google Scholar

[7] Sutikno, Concrete Practice Guide, State University of Surabaya, Surabaya, 2003.

Google Scholar

[8] T. Mulyono, Concrete Technology, Andi Offset, Yogyakarta, 2005.

Google Scholar

[9] Y. Senhadji, M. Mouli, and H. Khelafi, Sulfate attack of Algerian cement-based material with crushed limestone filler cured at different temperatures, Turkish J. Eng. Environ. Sci. 34 (2010) 131-134.

Google Scholar

[10] M.N. Triaswati, H. Didik, W. Boedi, and I. Wahyu, Use of Stone Ash to Reduce Natural Sand Aggregate in Concrete Mix with Additive Type D Additive, J. Infrastruct. Facil. Asset Manag. 3 (2019) 35-44.

Google Scholar

[11] F. Handayani, Benefits of stone ash waste as an additional building material, in VI Annu. Natl. Semin. Civ. Eng. Masters Progr. ULM Banjarmasin (2019) 59–68.

Google Scholar

[12] O. Onal and A.U. Ozturk, Artificial neural network application on microstructure–compressive strength relationship of cement mortar, Adv. Eng. Softw. 41 (2010) 165-169.

DOI: 10.1016/j.advengsoft.2009.09.004

Google Scholar

[13] M. Azimi-Pour and H. Eskandari-Naddaf, ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar, Constr. Build. Mater. 189 (2018) 978-992.

DOI: 10.1016/j.conbuildmat.2018.09.031

Google Scholar

[14] M.I. Khan, Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks, Autom. Constr. 22 (2011) 516-524.

DOI: 10.1016/j.autcon.2011.11.011

Google Scholar

[15] B.R. Prasad, H. Eskandari, and B.V. Reddy, Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN, Constr. Build. Mater. 23 (2009) 117-128.

DOI: 10.1016/j.conbuildmat.2008.01.014

Google Scholar

[16] D.K. Bui, T. Nguyen, J.S. Chou, H. Nguyen-Xuan, and T.D. Ngo, A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete, Constr. Build. Mater. 180 (2018) 320-333.

DOI: 10.1016/j.conbuildmat.2018.05.201

Google Scholar

[17] M.R. Khosravani, S. Nasiri, D. Anders, and K. Weinberg, Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach, Adv. Eng. Softw. 127 (2018) 51-58.

DOI: 10.1016/j.advengsoft.2018.10.002

Google Scholar

[18] A. Oztas, M. Pala, E. Ozbay, E. Kanca, M. Caglar, and M.A. Bhatti, Predicting the compressive strength and slump of high strength concrete using neural network, Constr. Build. Mater. 20 (2006) 769-775.

DOI: 10.1016/j.conbuildmat.2005.01.054

Google Scholar

[19] S. Chithra, S.S. Kumar, K. Chinnaraju, and F.A. Ashmita, A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks, Constr. Build. Mater. 114 (2016) 528-535.

DOI: 10.1016/j.conbuildmat.2016.03.214

Google Scholar

[20] M. Abu Yaman, M.A. Elaty, and M. Taman, Predicting the ingredients of self compacting concrete using artificial neural network, Alex. Eng. J. 56 (2017) 523-532.

DOI: 10.1016/j.aej.2017.04.007

Google Scholar

[21] M. Uysal and H. Tanyildizi, Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network, Constr. Build. Mater. 25 (2011) 4105-4111.

DOI: 10.1016/j.conbuildmat.2010.11.108

Google Scholar

[22] B. Vakhshouri and S. Nejadi, ANFIS application to predict the compressive strength of lightweight self-compacting concrete, in Proc. 2016 Futur. Technol. Conf. San Francisco, CA, USA, 2016, 28–35.

DOI: 10.1109/ftc.2016.7821586

Google Scholar

[23] H. Mashhadban, S.S. Kutanaei, and M.A. Sayarinejad, Prediction and modeling of mechanical properties in fiber reinforced self- compacting concrete using particle swarm optimization algorithm and artificial neural network, Constr. Build. Mater. 119 (2016) 277-287.

DOI: 10.1016/j.conbuildmat.2016.05.034

Google Scholar

[24] A. Sadrmomtazi, J. Sobhani, and M. Mirgozar, Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS, Constr. Build. Mater. 42 (2013) 205-216.

DOI: 10.1016/j.conbuildmat.2013.01.016

Google Scholar

[25] A.F. Bingol, A. Tortum, and R. Gül, Neural networks analysis of compressive strength of lightweight concrete after high temperatures.Mater, Materials. 52 (2013) 258-264.

DOI: 10.1016/j.matdes.2013.05.022

Google Scholar

[26] F. Altun, O. Kis i, and K. Aydin, Predicting the compressive strength of steel fiber added lightweight concrete using neural network, Comput. Mater. Sci. 42 (2008) 259-265.

DOI: 10.1016/j.commatsci.2007.07.011

Google Scholar

[27] A. Hendi, A. Behravan, D. Mostofinejad, S.M. Moshtaghi, and K. Rezayi, Implementing ANN to minimize sewage systems concrete corrosion with glass beads substitution, Constr. Build. Mater. 138 (2017) 441-454.

DOI: 10.1016/j.conbuildmat.2017.02.034

Google Scholar

[28] O. Hodhod and G.A. Salama, Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling, Ain Shams Eng. J. 4 (2013) 651-660.

DOI: 10.1016/j.asej.2013.02.007

Google Scholar

[29] M. Abambres and E.O. Lantsoght, ANN-Based Fatigue Strength of Concrete under Compression, Materials. 12 (2019) 3787.

DOI: 10.3390/ma12223787

Google Scholar

[30] P. Duan, Z. Shui, W. Chen, and C. Shen, Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Constr. Build. Mater. 44 (2013) 1-6.

DOI: 10.1016/j.conbuildmat.2013.02.075

Google Scholar

[31] F. Deng, Y. He, S. Zhou, Y. Yu, H. Cheng, and X. Wu, Compressive strength prediction of recycled concrete based on deep learning, Constr. Build. Mater. 175 (2018) 562-569.

DOI: 10.1016/j.conbuildmat.2018.04.169

Google Scholar

[32] National Standard Agency, Procedure for C Light Concrete Mixing with Light Aggregate SNI 03-3449-2002, Jakarta. (2002).

Google Scholar

[33] SK SNI 03-1974-1990, Concrete Compressive Strength. (1990).

Google Scholar