Stability of Individual Phases in the Elastic Matrix of a Composite

Article Preview

Abstract:

A methodology for analytical stability assessment of individual compressed flexible phases of discretely heterogeneous composite elements of engineering structures is proposed to ensure their reliable safe operation and minimise the consequences of emergencies. Based on the energy balance equation for the proportional forces of a normal resistance of the medium to the phase displacement, expressions are obtained for determining the critical force, taking into account the possible initial curvature (non-rectilinearity) of a single phase in the elastic medium of the matrix for three possible cases of stability loss. The approbation of the results of the study on the example of deformation features of reinforcing bars in a compressed reinforced concrete column is presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1100)

Pages:

149-157

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mehanika kompozitov: v 12 t. / pod obsh. red. A.N. Guzya. K. Nauk. dumka, 1993–2003 [in Ukrainian].

Google Scholar

[2] Jack R. Vinson, Robert L. Sierakowski, The behavior of structures composed of composite materials, Springer Dordrecht, 2002.

Google Scholar

[3] W. Zhao, W.Gu, J. Zhou, Z. Long, Eccentric compression behavior of thin-walled steel-tube/bamboo-plywood assembling short hollow column with binding bars, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 32(15) (2016) 75–82.

DOI: 10.1177/1369433217718982

Google Scholar

[4] W. Abdelazim, H.M. Mohamed, M.Z. Afifi, B. Benmokrane, Proposed slenderness limit for glass fiber-reinforced polymer-reinforced concrete columns based on experiments and buckling analysis ACI Structural Journal, 117(1) (2020) 241–254.

DOI: 10.14359/51718073

Google Scholar

[5] H. Debski, P. Rozylo, P. Wysmulski, Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading, Composite Structures, 252 (2020) 112716.

DOI: 10.1016/j.compstruct.2020.112716

Google Scholar

[6] S. Li, C.-J. Jiao, S.-S. He, Axial behavior of slender reactive powder concrete-filled steel tubular columns confined by CFRP, Engineering Structures, 240 (2021) 112304.

DOI: 10.1016/j.engstruct.2021.112304

Google Scholar

[7] P. Rozylo, H. Debski, Effect of eccentric loading on the stability and load-carrying capacity of thin-walled composite profiles with top-hat section, Composite Structures, 245 (2020) 112388.

DOI: 10.1016/j.compstruct.2020.112388

Google Scholar

[8] L. Guo, J. Wang, W. Wang, M. Duan, Seismic evaluation and calculation models of CFDST column blind bolted to composite beam joints with partial shear interaction, Engineering Structures 196 (2019) 109269.

DOI: 10.1016/j.engstruct.2019.06.005

Google Scholar

[9] Q. Liu, P. Qiao, X. Guo, Buckling analysis of restrained orthotropic plates under combined in-plane shear and axial loads and its application to web local buckling, Composite Structures, 111(1) (2014) 540–552.

DOI: 10.1016/j.compstruct.2014.01.036

Google Scholar

[10] J.F. Monsalve-Cano, J.D. Aristizábal-Ochoa, Stability and free vibration analyses of orthotropic 3d beam–columns with singly symmetric section including shear effects, Engineering Structures, 113 (2016) 315–327.

DOI: 10.1016/j.engstruct.2016.01.036

Google Scholar

[11] O.V. Goryk, A.M. Pavlikov, V.A. Kyrychenko, Calculation of statically indeterminate composite beam elements by using refined boundary conditions and with account of their state diagrams, Mechanics of Composite Materials, 45 (1) (2009) 53–58.

DOI: 10.1007/s11029-009-9058-9

Google Scholar

[12] P. Czapski, P. Jakubczak, J. Bieniaś, M. Urbaniak, T. Kubiak, Influence of autoclaving process on the stability of thin-walled, composite columns with a square cross-section – Experimental and numerical studies, Composite Structures, 250 (2020) 112594.

DOI: 10.1016/j.compstruct.2020.112594

Google Scholar

[13] A.V. Gorik, R.V. Tolstopyatov, Account of the cross-sectional deplanation of a composite bar in determining the critical force, Mechanics of Composite Materials, 39(2) (2003) 149–152.

Google Scholar

[14] S.P. Tymoshenko, Ustoichyvost sterzhnei, plastyn y obolochek. M. Nauka, 1971 [in Ukrainian].

Google Scholar

[15] O.V. Goryk, V.H. Piskunov, V.M. Cherednikov, Mekhanika deformuvannia kompozytnykh brusiv, Poltava-Kyiv: ASMI, 2008 [in Ukrainian].

Google Scholar

[16] V.V. Bolotin, Yu.N. Novichkov, Mehanika mnogoslojnyh konstrukcij, M. Mashinostroenie, 1980 [in Ukrainian].

Google Scholar

[17] V.I. Korolev, Uprugoplasticheskie deformacii obolochek, M. Mashinostroenie, 1971 [in Ukrainian].

Google Scholar

[18] Ya.H. Panovko, Y.Y. Hubanova, Ustoichyvost y kolebanyia upruhykh system, M. Nauka, 1967 [in Ukrainian].

Google Scholar

[19] K.P. Muromskij, Ob ocenke yacheistogo betona kak uprugoj sredy, Beton i zhelezobeton, (5) (1984) 24–25 [in Ukrainian].

Google Scholar

[20] H. Wang, X. Xu, L. Zhou, The experimental study on concrete-filled thin-walled square steel box short columns fixed with composite steel bar, Applied Mechanics and Materials, (94–96) (2011) 1590–1595.

DOI: 10.4028/www.scientific.net/amm.94-96.1590

Google Scholar

[21] Y. Yang, B. Wu, L.-Y. Xu, D. Zhang, C. Zhao, Experimental study on the buckling behavior of double steel plate concrete composite slabs with stiffening ribs and tie plates, Engineering Structures, 255 (2022) 113895.

DOI: 10.1016/j.engstruct.2022.113895

Google Scholar

[22] X. Huang, S. Duan, Q. Liu, J. Nie, W. Han, Investigation on buckling behavior of laminated glass columns with elastic lateral restraint under axial compression. Composite Structures 279 (2022) 114810.

DOI: 10.1016/j.compstruct.2021.114810

Google Scholar

[23] M. Surianinov, D. Lazarieva, I. Kurhan, Stability of orthotropic plates, E3S Web of Conferences, 66 (2020) 06004.

DOI: 10.1051/e3sconf/202016606004

Google Scholar

[24] M. Surianinov, Y. Krutii, O. Boiko, V. Osadchiy, On the calculation of anisotropic plates by the numerical-аnalytical boundary elements method, AIP Conference Proceeding, 2534 (2022) 020003.

DOI: 10.1063/5.0106985

Google Scholar

[25] P. Czapski, T. Kubiak, Numerical and experimental investigations of the post-buckling behaviour of square cross-section composite tubes, Composite Structures, 132 (2015) 1160–1167.

DOI: 10.1016/j.compstruct.2015.07.039

Google Scholar

[26] A.V. Goryk, S.B. Koval'chuk, Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end, Mechanics of Composite Materials, 54 (2) (2018) 179–190.

DOI: 10.1007/s11029-018-9730-z

Google Scholar

[27] S.B. Koval'chuk, A.V. Gorik, A.N. Pavlikov, A.V. Antonets, Solution to the task of elastic axial compression-tension of the composite multilayered cylindrical beam, Strength Materials, 51 (2) (2019) 240–251.

DOI: 10.1007/s11223-019-00070-z

Google Scholar

[28] V.I. Shvab'yuk, Ya.M. Pasternak, S.V. Rotko, Refined solution of the timoshenko problem for an orthotropic beam on a rigid base, Materials Science, 46 (1) (2010) 56–63.

DOI: 10.1007/s11003-010-9263-7

Google Scholar

[29] V.P. Mitrofanov, S.I. Arcev, Predelnaya szhimaemost betona normalnyh sechenij zhelezobetonnyh elementov, Problemi teoriyi i praktiki zalizobetonu, (1997) 333–337 [in Ukrainian].

Google Scholar