Process Gas Control for High-Resistance HPSI-SiC Growth

Article Preview

Abstract:

In this study, we tried to grow SiC ingots with high resistivity and polytype stability with adoption hydrogen mixed gas flow to the PVT method. Three different types of growth atmosphere of N2+Ar, H/Ar ratio:10% and 30% were employed. The polytype inclusion, crystal shape and transparency, and their resistivity were systematically investigated by UVF images, exposing backlighting, and high resistivity analysis using COREMA (Contactless Resistivity Mapper), respectively. The SiC ingot grown with adoption N2+Ar exhibited a suppression of polytype inclusion, a convex shape and a lower resistivity. In contrast, the SiC ingot with more higher H/Ar ratio of 30% than that of 10% shows no polytype inclusion and highest resistivity of 1.7E11mΩ∙cm. The growth atmosphere of relative higher H/Ar ratio in SiC crystal growth could be led the way to manufacture HPSI (high-purity semi-insulating)-SiC single crystal with polytype stability.

You have full access to the following eBook

Info:

Periodical:

Materials Science Forum (Volume 1156)

Pages:

43-48

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] J. R. Jenny, D.P. Malta, St.G. Müller, A.R. Powell, V.F. Tsvetkov, H. McD. Hobgood, R.C. Glass, C. H. Carter, Jr, High-purity semi-insulating 4H-SiC for microwave device applications, Journal Electron Mater 31 (2002) 366.

DOI: 10.4028/www.scientific.net/msf.457-460.35

Google Scholar

[2] M.V.S. Chandrashekhar, I. Chowdhury, P. Kaminski, R. Kozlowski, P. B. Klein, T. Sudarshan, High purity semi-insulating 4H-SiC epitaxial layers by defect-competition epitaxy: Controlling Si Vacancies, Applied Physics Express 5 (2012) 025502.

DOI: 10.1143/apex.5.025502

Google Scholar

[3] E. Tymicki, K. Grasza, K. Racka, T. Łukasiewicz, M. Piersa, K. Kościewicz, D. Teklińska, R. Diduszko, P.Skupiński, R.Jakieła, J. Krupka, Effect of nitrogen doping on the growth of 4H polytype on the 6H-SiC seed by PVT method, Material Science Forum 29 (2012) 717-720.

DOI: 10.4028/www.scientific.net/msf.717-720.29

Google Scholar

[4] I. Zwieback, D. L. Barrett, A. K. Gupta U. S. Patent No. 9,017,629 (2015).

Google Scholar

[5] J.R. Jenny, D.P. Malta, M. R. Calus, St. G. Müller, A. R. Powell, V. F. Tsvetkov, H. McD. Hobgood, R.C. Glass, C.H. Carter. Jr, Development of large diameter high-purity semi-insulating 4H-SiC wafers for microwave devices, Materials Science Forum 457-460 (2004) 35-40.

DOI: 10.4028/www.scientific.net/msf.457-460.35

Google Scholar

[6] I. Zwieback, T. E. Anderson, A. K. Gupta U. S. Patent No. 8,512,471 (2013).

Google Scholar

[7] M. A. Fanton, Q. Li, A. Y. Polyakov, M. Skowronski, R. Cavalero, R. Ray, Effect of hydrogen on the properties of SiC crystals grown by physical vapor transport: Thermodynamic considerations and experimental results, Journal of Crystal Growth 287 (2006) 339-343.

DOI: 10.1016/j.jcrysgro.2005.11.022

Google Scholar

[8] K.l. Mao, Y.M. Wang, R.S. Wei, B. Li, W. Xu, L. Z. Wang, Polytype stabilization of high-purity semi-insulating 4H-SiC crystal via the PVT method, ISSN 1392-1320 Materials Science Vol.22 (2016) No.2.

DOI: 10.5755/j01.ms.22.2.12914

Google Scholar

[9] Q. Li, A. Y. Polyakov, M. Skowronski, M. A. Fanton, R. C. Cavalero, R. G. Ray, B. E. Weiland, Properties of 6H-SiC crystals grown by hydrogen-assisted physical vapor transport, Applied Physics. Letter 86 (2005) 202102.

DOI: 10.1063/1.1923181

Google Scholar

[10] J.G. Kim, J.H. An, J.D. Seo, J.K. Kim, M.O. Kyun, W.J. Lee, I.S. Kim, B.C. Shin, K.R. Ku, Hydrogen effect on SiC single crystal prepared by the physical vapor transport method, Materials Science Forum 556-557 (2007) 25-28.

DOI: 10.4028/www.scientific.net/msf.556-557.25

Google Scholar

[11] W.J. Lee, B.C. Shin, I.S. Kim, K.R. Ku, Korea Patent No. 100, 845, 946 (2008).

Google Scholar