Thick Semi-Insulating 4H-SiC Layer Exfoliation for Non-Epitaxial Engineered Substrates

Article Preview

Abstract:

The growing demand for 4H-SiC substrates in power device fabrication has encouraged the development of engineered substrates to reduce costs and facilitate wafer re-usability for effective material utilization. This work presents a novel approach for manufacturing SiC power devices is to exfoliate the required drift layer thickness from ultra-high-quality Semi Insulating (SI) 4H-SiC material, bond it to a conductive SiC substrate and thus obtain the non-epitaxial engineered substrate. Energy-filtered Ion Implantation (EFII) technology enables custom doping profiles, precise control of doping concentration, and potentially robust material properties compared to as-grown epitaxial layers in the bonded layer. Key steps to exfoliate a 4μm thick SiC layer from semi-insulating substrates and bond it to low-cost, highly conductive mono-crystalline SiC are demonstrated. This paper mainly focuses on the physical characterization of demonstrated samples.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Wolfspeed. N-Type SiC Substrates. https://www.wolfspeed.com/products/materials/ n-type-sic-substrates/. Accessed: 2024-09-02. 2024.

Google Scholar

[2] Soitec. SmartSiC™ for Automotive Applications. https://www.soitec.com/en/products/ auto-smartsic. Accessed: 2024-09-02. 2024.

Google Scholar

[3] Séverin Rouchier et al. "150 mm SiC Engineered Substrates for High-Voltage Power Devices". In: Materials Science Forum 1062 (2022), p.131–135.

Google Scholar

[4] Hitesh Jayaprakash et al. "Study on Estimation of Device Yield in Non-Epitaxial 4H-SiC Material Relating to Defect Densities Influencing Bipolar Degradation with XRT- Measurements". In: Solid State Phenomena 344 (2023), p.53–57.

DOI: 10.4028/p-qymc38

Google Scholar

[5] Ralf Siemieniec et al. "A SiC Trench MOSFET concept offering improved channel mobility and high reliability". In: 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). 2017, P.1–P.13.

DOI: 10.23919/epe17ecceeurope.2017.8098928

Google Scholar

[6] Dethard Peters et al. "Performance and ruggedness of 1200V SiC — Trench — MOSFET". In: 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017, p.239–242. ISBN: 978-4-88686-094-1.

DOI: 10.23919/ispsd.2017.7988904

Google Scholar

[7] Chenming Hu. "Optimum doping profile for minimum ohmic resistance and high-breakdown voltage". In: IEEE Transactions on Electron Devices 26 (1979), p.243–244. URL: https: //api.semanticscholar.org/CorpusID:36831640.

DOI: 10.1109/t-ed.1979.19416

Google Scholar

[8] M. Kaneko and T. Kimoto. "High-Temperature Operation of n- and p-Channel JFETs Fabricated by Ion Implantation Into a High-Purity Semi-Insulating SiC Substrate". In: IEEE Electron Device Letters 39.5 (2018), p.723–726.

DOI: 10.1109/led.2018.2822261

Google Scholar

[9] Constantin Csato et al. "Energy filter for tailoring depth profiles in semiconductor doping application". In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 365 (2015), p.182–186.

DOI: 10.1016/j.nimb.2015.07.102

Google Scholar

[10] Roland Rupp et al. "Alternative Highly Homogenous Drift Layer Doping for 650 V SiC Devices". In: Materials Science Forum 858 (2016), p.531–534.

DOI: 10.4028/www.scientific.net/msf.858.531

Google Scholar

[11] L. Di Cioccio et al. "Silicon carbide on insulator formation by the Smart-Cut¬Æ process". In: Materials Science and Engineering: B 46.1 (1997), p.349–356.

DOI: 10.1016/s0921-5107(96)02004-1

Google Scholar

[12] M. Levy et al. "Fabrication of single-crystal lithium niobate films by crystal ion slicing". In: Applied Physics Letters 73.16 (1998), p.2293–2295.

DOI: 10.1063/1.121801

Google Scholar

[13] Bing Hu et al. 2018 International Flexible Electronics Technology Conference (IFETC): 7-9 Aug. 2018. Piscataway, NJ: IEEE, 2018. ISBN: 9781538633571.

DOI: 10.1109/ifetc42203.2018

Google Scholar

[14] Marko Swoboda et al. "Laser Assisted SiC Wafering Using COLD SPLIT". In: Materials Science Forum 897 (2017), p.403–406.

DOI: 10.4028/www.scientific.net/msf.897.403

Google Scholar

[15] David J. Meyer et al. "Epitaxial Lift-Off and Transfer of III-N Materials and Devices from SiC Substrates". In: IEEE Transactions on Semiconductor Manufacturing 29.4 (2016), p.384–389.

DOI: 10.1109/tsm.2016.2599839

Google Scholar

[16] Stephen W. Bedell et al. "Layer transfer by controlled spalling". In: Journal of Physics D: Applied Physics 46.15 (2013), p.152002.

Google Scholar

[17] J. A. Bennett et al. "Complete surface exfoliation of 4H–SiC by H+- and Si+-coimplantation". In: Applied Physics Letters 76.22 (2000), p.3265–3267.

DOI: 10.1063/1.126640

Google Scholar

[18] Shifei Han et al. "Laser slicing of 4H-SiC wafers based on picosecond laser-induced micro-explosion via multiphoton processes". In: Optics & Laser Technology 154 (2022), p.108323.

DOI: 10.1016/j.optlastec.2022.108323

Google Scholar

[19] Jian Li et al. "Direct bonding of silicon carbide with hydrofluoric acid treatment for high-temperature pressure sensors". In: Ceramics International 46.3 (2020), p.3944–3948.

DOI: 10.1016/j.ceramint.2019.10.123

Google Scholar

[20] Fengxuan Wang et al. "Low-Temperature Direct Bonding of SiC to Si via Plasma Activation". In: Applied Sciences 12.7 (2022), p.3261.

Google Scholar

[21] J. Grisolia et al. "Kinetic aspects of the growth of hydrogen induced platelets in SiC". In: Journal of Applied Physics 87.12 (2000), p.8415–8419.

DOI: 10.1063/1.373556

Google Scholar

[22] L.-J. Huang et al. "Onset of blistering in hydrogen-implanted silicon". In: Applied Physics Letters 74.7 (1999), p.982–984.

DOI: 10.1063/1.123430

Google Scholar

[23] R. B Gregory, O.W Holland, D.K. Thomas, T.A Wetterroth, S.R Wilson. "The effect of Damage on Hydrogen-implant-induced thin-film seperation from Bulk Silicon Carbode." In: Mat. Res. Soc. Symp. Proc. 572 (1999), p.33–38.

DOI: 10.1557/proc-572-33

Google Scholar

[24] V. P. Amarasinghe et al. "Properties of H + Implanted 4H-SiC as Related to Exfoliation of Thin Crystalline Films". In: ECS Journal of Solid State Science and Technology 3.3 (2014), P37–P42.

DOI: 10.1149/2.001404jss

Google Scholar

[25] Voshadhi Pansilu Amarasinghe. "Single Crystalline Silicon Carbide Thin Film Exfoliation for Power Device Applications". Ph.D. Dissertation. Graduate School-New Brunswick Rutgers, The State University of New Jersey, 2015.

Google Scholar

[26] Madan Sharma et al. "Blistering kinetics in H-implanted 4H-SiC for large-area exfoliation". In: Current Applied Physics 31 (2021), p.141–150.

DOI: 10.1016/j.cap.2021.08.007

Google Scholar

[27] Volker Häublein and Heiner Ryssel, eds. IIT 2018 proceedings: 2018 22nd International Conference on Ion Implantation Technology, September 16-21, 2018, Congress Centrum, Würzburg, Germany. Piscataway, NJ: IEEE, 2018. ISBN: 9781538668290.

DOI: 10.1109/iit44493.2018

Google Scholar

[28] Nidec Machine Tool Corporation. Room Temperature Wafer Bonding Machine BOND MEISTER. https://www.nidec.com/en/machine-tool/products/B701/M102/S100/ NMTJ-wafer_bonding_machine/. Accessed: 2024-08-30.

Google Scholar

[29] Kensuke Ide et. al. "Wafer Bonder Applicable to Devices in Various Fields,Mitsubishi Heavy Industries Technical Review Vol.48 No.1(2011)". In: Mitsubishi Heavy Industries Technical Review 48.1 (2011), p.48–52.

DOI: 10.33737/gpps23-tc-016

Google Scholar

[30] et. al. S. Langa. "Room Temperature bonding for Vacuum applications : Climatic and long time tests". In: (2004).

Google Scholar

[31] Zheng Cui. "Wafer Bonding". In: Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li. Boston, MA: Springer US, 2013, p.1–7.

Google Scholar

[32] J. Wong-Leung et al. "Ion implantation in 4H–SiC". In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266.8 (2008), p.1367–1372.

DOI: 10.1016/j.nimb.2007.12.049

Google Scholar

[33] Manuel Belanche et al. "Aluminum channeling in 4H-SiC by high-energy implantation above 10 MeV". In: Materials Science in Semiconductor Processing 179 (2024), p.108461.

DOI: 10.1016/j.mssp.2024.108461

Google Scholar

[34] Kazuya Yamamura et al. "High-Integrity Finishing of 4H-SiC (0001) by Plasma-Assisted Polishing". In: Advanced Materials Research 126-128 (2010), p.423–428.

DOI: 10.4028/www.scientific.net/amr.126-128.423

Google Scholar

[35] K. Yamamura et al. "Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface". In: CIRP Annals 60.1 (2011), p.571–574.

DOI: 10.1016/j.cirp.2011.03.072

Google Scholar

[36] Guillaume Gelineau et al. "Evaluation of Crystal Quality and Dopant Activation of Smart CutTM - Transferred 4H-SiC Thin Film". In: Materials Science Forum 1089 (June 2023), p.71–79.

DOI: 10.4028/p-026sj4

Google Scholar