[1]
B. Raghothamachar, M. Dudley, X-Ray Topography, Materials Characterization, ASM International 2019.
Google Scholar
[2]
T. Ailihumaer, H. Peng, Y. Liu, B. Raghothamachar, M. Dudley, Characterization of Dislocations in 4H-SiC Single Crystals at the Initial Growth Stage by Synchrotron X-ray Topography, ECS Transactions 98(6) (2020) 125.
DOI: 10.1149/09806.0125ecst
Google Scholar
[3]
Q. Cheng, T. Ailihumaer, H. Peng, Y. Liu, B. Raghothamachar, M. Dudley, Analysis of Dislocations in PVT-Grown 6H-SiC through Grazing-Incidence X-Ray Topographic Images and Ray-Tracing Simulation, ECS Transactions 98(6) (2020) 133.
DOI: 10.1149/09806.0133ecst
Google Scholar
[4]
H. Peng, Y. Liu, T. Ailihumaer, B. Raghothamachar, M. Dudley, K. Sampayan, S. Sampayan, Investigation of Dislocations in 6H-SiC Axial Samples Using Synchrotron X-Ray Topography and Ray Tracing Simulation, ECS Transactions 104(7) (2021) 147-155.
DOI: 10.1149/10407.0147ecst
Google Scholar
[5]
Q.Y. Cheng, H.Y. Peng, S.S. Hu, Z.Y. Chen, Y.F. Liu, B. Raghothamachar, M. Dudley, Ray-Tracing Simulation Analysis of Effective Penetration Depths on Grazing Incidence Synchrotron X-Ray Topographic Images of Basal Plane Dislocations in 4H-SiC Wafers, Materials Science Forum, Trans Tech Publ, 2022, pp.366-370.
DOI: 10.4028/p-2kzz01
Google Scholar
[6]
H. Peng, Y. Liu, Z. Chen, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, K. Sampayan, S. Sampayan, Synchrotron X-ray topographic characterization of dislocations in 6H-SiC axial samples, Journal of Crystal Growth 579 (2022) 126459.
DOI: 10.1016/j.jcrysgro.2021.126459
Google Scholar
[7]
Z. Chen, Y. Liu, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, Analysis of strain in ion implanted 4H-SiC by fringes observed in synchrotron X-ray topography, Journal of Crystal Growth 627 (2024) 127535.
DOI: 10.1016/j.jcrysgro.2023.127535
Google Scholar
[8]
S. Hu, Y. Liu, Q. Cheng, Z. Chen, X. Tong, B. Raghothamachar, M. Dudley, Investigation of defect formation at the early stage of PVT-grown 4H-SiC crystals, Journal of Crystal Growth 628 (2024) 127542.
DOI: 10.1016/j.jcrysgro.2023.127542
Google Scholar
[9]
G. Dhanaraj, B. Raghothamachar, M. Dudley, Growth and Characterization of Silicon Carbide Crystals, in: G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.), Springer handbook of crystal growth, Springer Science & Business Media 2010, p.797.
DOI: 10.1007/978-3-540-74761-1_23
Google Scholar
[10]
F.Z. Wu, H.H. Wang, S.Y. Byrapa, B. Raghothamachar, M. Dudley, E. Sanchez, D.M. Hansen, R. Drachev, S.G. Mueller, M.J. Loboda, Synchrotron X-ray Topography Studies of the Propagation and Post-Growth Mutual Interaction of Threading Growth Dislocations with c-component of Burgers Vector in PVT-Grown 4H-SiC, Materials Science Forum, Trans Tech Publ, 2012, pp.343-346.
DOI: 10.4028/www.scientific.net/msf.717-720.343
Google Scholar
[11]
T.A. Kuhr, E.K. Sanchez, M. Skowronski, W.M. Vetter, M. Dudley, Hexagonal voids and the formation of micropipes during SiC sublimation growth, Journal of Applied Physics 89(8) (2001) 4625-4630.
DOI: 10.1063/1.1355716
Google Scholar
[12]
T. Fujimoto, H. Tsuge, M. Katsuno, S. Sato, H. Yashiro, H. Hirano, T. Yano, A possible mechanism for hexagonal void movement observed during sublimation growth of SiC single crystals, Materials Science Forum, Trans Tech Publ, 2013, pp.577-580.
DOI: 10.4028/www.scientific.net/msf.740-742.577
Google Scholar
[13]
A. Arora, A. Patel, B.S. Yadav, A. Goyal, O.P. Thakur, A.K. Garg, R. Raman, Study on evolution of micropipes from hexagonal voids in 4H-SiC crystals by cathodoluminescence imaging, Microscopy and Microanalysis 27(1) (2021) 215-226.
DOI: 10.1017/s1431927621000039
Google Scholar