Epitaxial SiC Development for High Nitrogen Incorporation

Article Preview

Abstract:

SiCOI is used as a lower cost substrate for power electronics and enables fabrication of MEMS and photonics platforms. Modification of the mechanical properties of SiC through doping is a potential pathway for improving resonator performance. This effort aimed to develop growth parameters for growth of 4H-SiC with nitrogen concentrations of 2x1020 cm-3 with a smooth surface morphology for fabrication of SiCOI wafers for MEMS fabrication. Growth conditions that were investigated include substrate polarity, growth pressure, C/Si ratio, temperature, and carrier gas flow. Highly doped grown epiwafers contained particle defects which exhibited different morphologies for C- and Si-polarities.

You have full access to the following eBook

Info:

Periodical:

Materials Science Forum (Volume 1157)

Pages:

17-22

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] G. Gelineau, C. Masante, E. Rolland, S. Barbet, L. Corbin, A. André, V. Amalbert, S. Caridroit, M. Delcroix, S. Huet, A. Moulin, V. Prudkovskiy, N. Troutot, S. Rouchier, L. Turchetti, K. Mony and J. Widiez, CEA-Leti, Univ. Grenoble Alpes, "Processing and electrical characterization of SiC-on-Insulator structures", ICSCRM 2023, (Sep 2023), Sorrente, Italy. ffcea-04557058

DOI: 10.4028/p-ydh8qb

Google Scholar

[2] J. Yang, B. Hamelin, and F. Ayazi, J. of Microelectromechanical Systems, 29, (2020) 1473–82.

Google Scholar

[3] Lutong Cai, Jingwei Li, Ruixuan Wang, and Qing Li, Photonics Research 10, no. 4 (2022).

Google Scholar

[4] Ashwin K. Samarao and Farrokh Ayazi, IEEE Trans Electron Devices 59 (2012) 87-93.

Google Scholar

[5] S. Sapienza, M. Ferri, L. Belsito, D. Marini, M. Zielinski, F. La Via and A.Roncaglia, Micromachines (2021), 12, 1072.

DOI: 10.3390/mi12091072

Google Scholar

[6] C. Calabretta, V. Scuderi, C. Bongiorno, A. Cannizzaro, R. Anzalone, L. Calcagno, M. Mauceri, D. Crippa, S. Boninelli, and F. La Via, Cryst. Growth Des., 22 (2022) 4996−5003 .

DOI: 10.1021/acs.cgd.2c00515

Google Scholar

[7] T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology, 1st ed.; John Wiley & Sons: Singapore, 2014.

Google Scholar

[8] Y.A. Vodakov, E.N. Mokhov, M.G. Ramm, A.D. Roenkov, Springer Proceedings in Physics. Washington, DC, USA: Third International Conference on Amorphous and Crystalline Silicon Carbide and Other Group IV-IV Materials; 1990, 56 (1992) 329-334.

DOI: 10.1007/978-3-642-84402-7_50

Google Scholar

[9] T.A. Kuhr, JinQiang Liu, Hun Jae Chung and M. Skowronski, J. Appl. Phys. 92, (2002) 5863-71.

Google Scholar

[10] U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson and E. Janzén, J. Cryst. Growth, 236 (2002) 101-112.

DOI: 10.1016/s0022-0248(01)02198-4

Google Scholar

[11] W. Chen, K.-y. Lee, and M. Capano, J. Cryst. Growth, 297 (2006) 265-71.

Google Scholar

[12] D.J. Larkin, P.G. Neudeck, J.A. Powell, L.G. Matus, Appl. Phys. Lett. 65 (1994) 1659.

Google Scholar

[13] R. Arvinte, M. Zielinski, T. Chassagne, M. Portail, A. Michon, P. Kwasnicki, S.Juillaguet and H. Peyre, Mat. Sci. Forum, 821 (2015) 149-52.

DOI: 10.4028/www.scientific.net/msf.821-823.149

Google Scholar

[14] A.O. Konstantinov, C. Hallin, B. Pécz, O. Kordina and E. Janzén, J. Cryst. Growth, 178 (1997) 495-504.

DOI: 10.1016/s0022-0248(97)00007-9

Google Scholar