[1]
D. Wanasinghe, F. Aslani, A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering. 176 (2019) 107207.
DOI: 10.1016/j.compositesb.2019.107207
Google Scholar
[2]
V. Lebedev, R. Kryvobok, A. Cherkashina, A. Bliznyuk, G. Lisachuk, T. Tykhomyrova, Design and research polymer composites for absorption of electromagnetic radiation, Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). (2022) 1–4.
DOI: 10.1109/khpiweek57572.2022.9916467
Google Scholar
[3]
G. Lisachuk, R. Kryvobok, V. Voloshchuk, O. Lapuzina, A. Zakharov, Study of Technological Features of Celsian Ceramics Creation, Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP (2021).
DOI: 10.1109/nap51885.2021.9568546
Google Scholar
[4]
G. Lisachuk, R. Kryvobok, O. Lapuzina, M. Maystat, N. Kryvobok, V. Voloshchuk, I. Gusarova, To the problem of the creation of high–temperature radio–absorbing composite ceramic materials, Proceedings of the 2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties (NAP–2018). 1 (2018) 01SPN41.
DOI: 10.1109/nap.2018.8914804
Google Scholar
[5]
P. Nyamukamba, O.O. Okoh, H. Mungondori, R.T. Taziwa, S. Zinya, Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. Titanium Dioxide - Material for a Sustainable Environment. 8 (2018) 151–175.
DOI: 10.5772/intechopen.75425
Google Scholar
[6]
Y. Taneja, D. Dube, R. Singh, Recent advances in elemental doping and simulation techniques: improving structural, photophysical and electronic properties of titanium oxide. Journal of Materials Chemistry C. 12 (2024 –14808.
DOI: 10.1039/d4tc02031f
Google Scholar
[7]
K. Nakaso, K. Okuyama, M. Shimada, S.E. Pratsinis, Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chemical Engineering Science. 58 (15) (2003) 3327–3335.
DOI: 10.1016/s0009-2509(03)00213-6
Google Scholar
[8]
D. J. Hee, J. Jinki, The Effects of Temperature on Particle Size in the Gas-Phase Production of TiO2, Aerosol Science and Technology. 23 (4) (1995) 553–560.
Google Scholar
[9]
M.K. Akhtar, Y. Xiong, S.E. Pratsinis, Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE J. 37 (1991) 1561–1570.
DOI: 10.1002/aic.690371013
Google Scholar
[10]
Y. Suyama, A. Kato, TiO2 produced by vapor-phase oxygenolysis of TiCl4. Journal of the American Ceramic Society. 59(3–4) (1976) 146–149.
DOI: 10.1111/j.1151-2916.1976.tb09453.x
Google Scholar
[11]
A. Shah, Y.H. Wang, H. Huang, L. Zhang, D.X. Wang, L. Zhou, Y.P. Duan, X.L. Dong, Z.D. Zhang, Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/ epoxy resin composite plates. Composite Structures. 131 (2015) 1132–41.
DOI: 10.1016/j.compstruct.2015.05.054
Google Scholar
[12]
A.A. Al–Ghamdi, O.A. Al–Hartomy, F.R. A–Solamy, N. Dishovsky, P. Malinova, P. Atanasova, N. Atanasovde, Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering. 96 (2016) 231–41.
DOI: 10.1016/j.compositesb.2016.04.039
Google Scholar
[13]
J.T. Hu, T.K. Zhao, X.R. Peng, W.B. Yang, X.L. Ji, T.H. Li, Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties. Composites Part B: Engineering. 134 (2018) 91–7.
DOI: 10.1016/j.compositesb.2017.09.071
Google Scholar
[14]
T.L. Makarova, P. Geydt, I. Zakharchuk, E. Lahderanta, A.A. Komlev, A.A. Zyrianova, M.A. Kanygin, O.V. Sedelnikova, V.I. Suslyaev, L.G. Bulusheva, A.V. Okotrub, Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering. 91 (2016) 505–12.
DOI: 10.1016/j.compositesb.2016.01.040
Google Scholar
[15]
V. Lebedev, O. Shestopalov, S. Vyrovets, A. Masikevych, A. Baranova, Electromagnetic Radiation Absorption Polymer Ceramic-Inorganic Composites Mechanical Properties Optimization. Lecture Notes in Networks and Systems. 808 (2023) 403–412.
DOI: 10.1007/978-3-031-46877-3_36
Google Scholar
[16]
V.V. Lebedev, D.V. Miroshnichenko, R.V. Kryvobok, A.M. Cherkashina, M.O. Riabchenko, Ceramic-inorganic polymer composites for protection against electromagnetic radiation mechanical properties designing. IOP Conference Series: Earth and Environmental Science. 1254 (2023) 012010.
DOI: 10.1088/1755-1315/1254/1/012010
Google Scholar
[17]
D. Miroshnichenko, V. Lebedev, M. Riabchenko, R. Kryvobok, A. Cherkashina, G. Lisachuk, Y. Soloviev, P. Stukhlyak, A. Mykytyshyn, Use of the Graphite to Obtain Composites for Absorbing Electromagnetic Radiation, Petroleum and Coal. 65(3) (2023) 718–7232023.
Google Scholar
[18]
V.V. Lebedev, D.V. Miroshnichenko, B.B. Nyakuma, V.F. Moiseev, O.V. Shestopalov, S.V. Vyrovets, Design of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. Journal of Engineering Sciences. 10(1) (2023) C1-C8.
DOI: 10.21272/jes.2023.10(1).c1
Google Scholar
[19]
V. Lebedev, D. Miroshnichenko, O. Shestopalov, A. Hrubnik, B.B. Nyakuma, Study of Polymer Inorganic Composites for Electromagnetic Radiation Absorption Using Potassium Titanates. Materials Science Forum. 1096 (2023) 73–9.
DOI: 10.4028/p-rxy201
Google Scholar