[1]
P. Resende Oliveira, M. May, T. Hallak Panzera, S. Hiermaier, Bio-based/green sandwich structures: A review. Thin-Walled Struct.. 177 (2022) 109426.
DOI: 10.1016/j.tws.2022.109426
Google Scholar
[2]
G.L. Vatulia, A.O. Lovska, Ye.S. Krasnokutskyi, Research into the transverse loading of the container with sandwich-panel walls when transported by rail. IOP Conf. Ser.: Earth Environ. Sci.. 1254 (2023) 012140.
DOI: 10.1088/1755-1315/1254/1/012140
Google Scholar
[3]
A. Kondratiev, V. Píštěk, V. Gajdachuk, M. Kharchenko, T. Nabokina, P. Kučera, O. Kučera, Effect of ply orientation on the mechanical performance of carbon fibre honeycomb cores. Polymers. 15(11) (2023) 2503.
DOI: 10.3390/polym15112503
Google Scholar
[4]
Sagin, O. Kuropyatnyk, A. Sagin, I. Tkachenko, O. Fomin, V. Píštěk, P. Kučera, Ensuring the environmental friendliness of drillships during their operation in special ecological regions of Northern Europe. J. Mar. Sci. Eng.. 10 (2022) 1331.
DOI: 10.3390/jmse10091331
Google Scholar
[5]
R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, A. Elharfi, Polymer composite materials: A comprehensive review. Compos. Struct.. 262 (2021) 113640.
DOI: 10.1016/j.compstruct.2021.113640
Google Scholar
[6]
Y. Li, D. Zhang, Local stress distributions in fiber-reinforced composites with consideration of thermal stresses during the curing process. Mech. Compos. Mater.. 57(5) (2021) 675–686.
DOI: 10.1007/s11029-021-09987-6
Google Scholar
[7]
A. Kondratiev, V. Píštěk, O. Vambol, P. Kučera, Effect of heating conditions during moulding on residual stress–strain behaviour of a composite panel. Polymers. 14(9) (2022) 1660.
DOI: 10.3390/polym14091660
Google Scholar
[8]
V.S. Balakrishnan, H. Seidlitz, Potential repair techniques for automotive composites: A review, Compos. Part B: Eng.. 145 (2018) 28–38.
DOI: 10.1016/j.compositesb.2018.03.016
Google Scholar
[9]
Z.G. Wang, Z.D. Li, W. Zhou, D. Hui, On the influence of structural defects for honeycomb structure. Compos. Part B: Eng.. 142 (2018) 183–192.
Google Scholar
[10]
W. Zhou, X.-L. Ji, S. Yang, J. Liu, L.-H. Ma, Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct.. 263 (2021) 113659.
DOI: 10.1016/j.compstruct.2021.113659
Google Scholar
[11]
S. Kurennov, N. Smetankina, K. Barakhov, Axisymmetric stress state of adhesive joint of a circular patch with a plate weakened by a circular cut-out. Period. Polytech. Mech. Eng.. 67(1) (2023) 12–18.
DOI: 10.3311/ppme.18801
Google Scholar
[12]
S. Olhan, B. Antil, B.K. Behera, Repair technologies for structural polymeric composites: An automotive perspective. Compos. Struct.. 352 (2025) 118711.
DOI: 10.1016/j.compstruct.2024.118711
Google Scholar
[13]
E. Archer, A. McIlhagger, Repair of damaged aerospace composite structures, in: P.E. Irving, C. Soutis (Eds.), Polymer Composites in the Aerospace Industry, 2nd ed., Woodhead Publishing, Sawston, UK, 2020, рр. 441–459.
DOI: 10.1016/b978-0-08-102679-3.00015-0
Google Scholar
[14]
A. Köllner, Predicting buckling-driven delamination propagation in composite laminates: An analytical modelling approach, Compos. Struct.. 266 (2021) 113776.
DOI: 10.1016/j.compstruct.2021.113776
Google Scholar
[15]
N. Shabanijafroudi, R. Ganesan, A new methodology for buckling, postbuckling and delamination growth behavior of composite laminates with delamination. Compos. Struct.. 268 (2021) 113951.
DOI: 10.1016/j.compstruct.2021.113951
Google Scholar
[16]
D. Zebrine, E. Wadhwani, S. Nutt, Surface porosity development in tool-side facesheets of honeycomb core sandwich structures during co-cure. Adv. Manuf.-Polym. Compos. Sci.. 8 (2022) 43–55.
DOI: 10.1080/20550340.2022.2056313
Google Scholar
[17]
J.T. Siivola, S. Minakuchi, T. Mizutani, K. Kitamoto, N. Takeda, Monitoring of dimple formation in honeycomb sandwich structures using distributed fiber optic sensors. J. Sandwich Struct. Mater.. 23 (2021) 3645–3668.
DOI: 10.1177/1099636220935821
Google Scholar
[18]
S. Ručevskis, T. Rogala, A. Katunin, Monitoring of damage in composite structures using an optimized sensor network: A data-driven experimental approach. Sensors. 23(4) (2023) 2290.
DOI: 10.3390/s23042290
Google Scholar
[19]
B. Wu, M. Destrade, Wrinkling of soft magneto-active plates. Int. J. Solids Struct.. 208–209 (2021) 13–30.
DOI: 10.1016/j.ijsolstr.2020.10.020
Google Scholar
[20]
V.V. Rizov, A. Shipsha, D. Zenkert, Indentation study of foam core sandwich composite panels. Compos. Struct.. 69(1) (2005) 95–102.
DOI: 10.1016/j.compstruct.2004.05.013
Google Scholar
[21]
C.T. James, P.R. Cunningham, A. Watson, Experimental and numerical investigation of the effect of asymmetry on the residual strength of a composite sandwich panel. J. Sandwich Struct. Mater.. 17(4) (2015) 417–445.
DOI: 10.1177/1099636215577348
Google Scholar
[22]
V. Slyvyns'kyy, V. Gajdachuk, V. Kirichenko, A. Kondratiev Basic parameters' optimization concept for composite nose fairings of launchers. 62nd International Astronautical Congress, IAC 2011. Cape Town, 3–7 October 2011. Red Hook NY: Curran. 9 (2012) 5701–5710.
Google Scholar
[23]
L.M. Gavva, V.V. Firsanov, Analytical review of account methods and experimental approaches to stress-strain state investigation of structurally-anisotropic aircraft panels made from composite materials. IOP Conf. Ser. Mater. Sci. Eng.. 927 (2020) 012067.
DOI: 10.1088/1757-899x/927/1/012067
Google Scholar
[24]
Q. Guo, W. Yao, W. Li, N. Gupta, Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices. Compos. Struct.. 260 (2020) 113267.
DOI: 10.1016/j.compstruct.2020.113267
Google Scholar
[25]
P. Gontarovskyi, N. Smetankina, N. Garmash, I. Melezhyk, Numerical analysis of stress-strain state of fuel tanks of launch vehicles in 3D formulation, in: M. Nechyporuk, V. Pavlikov, D. Kritskiy (Eds.), Integrated Computer Technologies in Mechanical Engineering – 2020. Springer. Cham. 188 (2021) 609–619.
DOI: 10.1007/978-3-030-66717-7_52
Google Scholar
[26]
V. Miroshnikov, O. Savin, V. Sobol, V. Nikichanov, Solving the problem of elasticity for a layer with N cylindrical embedded supports. Computation. 11(9) (2023) 172.
DOI: 10.3390/computation11090172
Google Scholar
[27]
K. Maiorova, I. Vorobiov, M. Boiko, V. Suponina, O. Komisarov, Implementation of reengineering technology to ensure the predefined geometric accuracy of a light aircraft keel. East.-Eur. J. Enterp. Technol.. 6(1) (114) (2021) 6–12.
DOI: 10.15587/1729-4061.2021.246414
Google Scholar
[28]
J.A. Mills, A.W. Hamilton, D.I. Gillespie, I. Andonovic, C. Michie, K. Burnham, C. Tachtatzis, Identifying defects in aerospace composite sandwich panels using high-definition distributed optical fibre sensors. Sensors. 20(23) (2020) 6746.
DOI: 10.3390/s20236746
Google Scholar
[29]
D.I. Gillespie, A.W. Hamilton, R.C. Atkinson, X. Bellekens, C. Michie, I. Andonovic, C. Tachtatzis, Defect detection in aerospace sandwich composite panels using conductive thermography and contact sensors. Sensors. 20(22) (2020) 6689.
DOI: 10.3390/s20226689
Google Scholar
[30]
D. Tkachenko, Y. Tsegelnyk, S. Myntiuk, V. Myntiuk, Spectral methods application in problems of the thin-walled structures deformation. J. Appl. Comput. Mech.. 8(2) (2022) 641–654.
Google Scholar
[31]
A. Szafraniec, S. Halko, O. Miroshnyk, R. Figura, A. Zharkov, O. Vershkov, Magnetic field parameters mathematical modelling of windelectric heater. Przegląd Elektrotechniczny. 97(8) (2021) 36–41.
DOI: 10.15199/48.2021.08.07
Google Scholar
[32]
V. Pasternak, A. Ruban, M. Surianinov, Y. Otrosh, A. Romin, Software modeling environment for solving problems of structurally inhomogeneous materials. Mater. Sci. Forum. 1068 (2022) 215–222.
DOI: 10.4028/p-h1c2rp
Google Scholar
[33]
V. Golovanevskiy, A. Kondratiev, Elastic properties of steel-cord rubber conveyor belt, Exp. Techn.. 45(2) (2021) 217–226.
DOI: 10.1007/s40799-021-00439-3
Google Scholar
[34]
A. Kondratiev, L. Smovziuk, M. Shevtsova, A. Tsaritsynskyi, T. Nabokina, Study of reduction of strength of composite plates with delamination, in: Advances in Mechanical and Power Engineering, CAMPE 2021, Lecture Notes in Mechanical Engineering, Springer. Cham. 2023, p.159–168.
DOI: 10.1007/978-3-031-18487-1_16
Google Scholar
[35]
V.V. Vasiliev, E.V. Morozov, Laminated composite beams and columns, in: Advanced Mechanics of Composite Materials, 3rd ed., Elsevier, Amsterdam. The Netherlands. 2013, p.435–486.
DOI: 10.1016/b978-0-08-098231-1.00008-x
Google Scholar
[36]
V.V. Vasiliev, E.V. Morozov, Failure criteria and strength of laminates, in: Advanced Mechanics of Composite Materials, 3rd ed., Elsevier, Amsterdam. The Netherlands. 2013, p.299–352.
DOI: 10.1016/b978-0-08-098231-1.00006-6
Google Scholar
[37]
V.V. Vasiliev, E.V. Morozov, Laminated composite plates, in: Advanced Mechanics of Composite Materials, 3rd ed., Elsevier, Amsterdam. The Netherlands. 2013, p.487–583.
DOI: 10.1016/b978-0-08-098231-1.00009-1
Google Scholar
[38]
A. Tiwary, R. Kumar, J.S. Chohan, A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc.. 51 (1) (2022) 865–870.
DOI: 10.1016/j.matpr.2021.06.276
Google Scholar
[39]
A.V. Haidachuk, B. Wang, S.A. Bychkov, et al., Development of an integrated criterion for the rational choice of polymeric composite materials. Mater. Sci.. 55 (2020) 899–907.
DOI: 10.1007/s11003-020-00385-2
Google Scholar