[1]
Liu, Zh, Chen, D-R, Wang, P., Ji, Z., Effect of filtration pressure on the particle penetration efficiency of fibrous filter media. Separation and Purification Technology. 274 (2021) 119086
DOI: 10.1016/j.seppur.2021.119086
Google Scholar
[2]
Shirman, T., Shirman, E., Liu, S., Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition. Atmosphere. 14 (2023) 1729
DOI: 10.3390/atmos14121729
Google Scholar
[3]
Cheberyachko, S., Cheberyachko, Y., Naumov, M., Deryugin, O. Development of an algorithm for effective design of respirator half-masks andencapsulated particle filters. International Journal of Occupational Safety and Ergonomics. 2(28) (2022) 1145–1159
DOI: 10.1080/10803548.2020.1869429
Google Scholar
[4]
Bazaluk, O., Ennan, A., Cheberiachko, S., Deryugin, O., Cheberiachko, Y., Saik, P., Lozynskyi, V., Knysh, I. Research on Regularitiesof Cyclic Air Motion through a Respirator Filter. Applied Sciences. 11 (2021) 3157
DOI: 10.3390/app11073157
Google Scholar
[5]
Bazaluk, O., Cheberyachko, S., Cheberyachko, Y., Deryugin, O., Lozynskyi, V., Knysh, I., Saik, P., Naumov, M., Development of a dust respirator by improving the half mask frame design. International Journal of Environmental Research and Public Health. 18 (2021) 5482
DOI: 10.3390/ijerph18105482
Google Scholar
[6]
Bémer, D., Régnier, R., Moréle, Y., Grippari, F., Appert-Collin, J.-Ch., Thomas, D., Study of clogging and cleaning cycles of a pleated cartridge filter used in a thermal spraying process to filter ultrafine particles. Powder Technology. 234 (2013) 1–6
DOI: 10.1016/j.powtec.2012.09.035
Google Scholar
[7]
Wilmot, T.Y., Halla, A.G., Lin, J.C., Mallia, D.V., Expanding number of Western US urban centers face declining summertime air quality due to enhanced wildland fire activity. Environ. Res. Lett. 16 (2021) 054036
DOI: 10.1088/1748-9326/abf966
Google Scholar
[8]
Japuntich, D.A., Franklin, L.M., Pui, D.Y., Kuehn, T.H., Kim, S.C., Viner, A.S., A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers. J. Nanoparticle Res. 9 (2007) 93–107
DOI: 10.1007/s11051-006-9179-1
Google Scholar
[9]
Kim, J.S., Lee, M-H., Measurement of effective filtration area of pleated bag filter for pulse-jet cleaning. Powder Technol. 343 (2019) 662–670
DOI: 10.1016/j.powtec.2018.11.080
Google Scholar
[10]
Li, S., Hu, S., Xie, B., Jin, H., Xin, J., Wang, F., et al., Influence of pleat geometry on the filtration and cleaning characteristics of filter media. Sep Purif Technol. 210 (2019) 38–47
DOI: 10.1016/j.seppur.2018.05.002
Google Scholar
[11]
Tanabe, E.H., Barros, P.M., Rodrigues, K.B., Aguiar, M.L., Experimental investigation of deposition and removal of particles during gas filtration with various fabric filters. Sep Purif Technol. 80(2) (2011) 187–195
DOI: 10.1016/j.seppur.2011.04.031
Google Scholar
[12]
Chen, D.-R., Pui, DYH, Liu, BYH., Optimization of Pleated Filter Designs Using a Finite-Element Numerical Model. Aerosol Sci Technol. 23(4) (1995) 579–590
DOI: 10.1080/02786829508965339
Google Scholar
[13]
Caesar, T., Schroth, T., The influence of pleat geometry on the pressure drop in deep-pleated cassette filters. Filtration & Separation. 39(9) (2002) 48–54
DOI: 10.1016/S0015-1882(02)80247-6
Google Scholar
[14]
Pliatsuk, L.D., Miakaieva, H.M., Miakaiev, O.V., Matematychne modeliuvannia filtratsii zabrudniuiuchykh rechovyn v mistsiakh roztashuvannia zoloshlakonakopychuvachiv teploelektrostantsii. Sciences Of Europe. 26(2) (2018) 28–33.
Google Scholar
[15]
Choi, P., Santos, C.A., Kim, M.K. et al., Pressure drop and optimization meta-models for arbitrary low-height pleated filter shapes and flowrates. J Mech Sci Technol. 35 (2021) 5007–5022
DOI: 10.1007/s12206-021-1019-9
Google Scholar
[16]
Cheng, K., Zhu, J., Qian, F., Cao, B., Lu, J., Han, Yu., CFD–DEM simulation of particle deposition characteristics of pleated air filter media based on porous media model. Particuology. 72 (2023) 37–48
DOI: 10.1016/j.partic.2022.02.003
Google Scholar
[17]
Saleh, A.M., Vahedi Tafreshi, H., Pourdeyhimi, B. An analytical approach to predict pressure drop and collection efficiency of dust-load pleated filters, Separation and Purification Technology. 161 (2016) 80–87
DOI: 10.1016/j.seppur.2016.01.034
Google Scholar
[18]
Kamiński, M., Gac, J.M., Sobiech, P., Kozikowski, P., Jankowski, T., Pressure Drop Dynamics during Filtration of Mixture Aerosol Containing Water, Oil, and Soot Particles on Nonwoven Filters. Polymers. 15(7) (2023) 1787
DOI: 10.3390/polym15071787
Google Scholar
[19]
Wang, W., Yuan, H., Fu, S. et al., Study on the breathing resistance of pleated three-dimensional masks. Sādhanā. 48 (2023) 223
DOI: 10.1007/s12046-023-02206-z
Google Scholar
[20]
Teng, G., Shi, G., Zhu, J., Qi, J., A numerical simulation method for pressure drop and normal air velocity of pleated filters during dust loading. PLoS ONE. 18(2) (2023) e0282026
DOI: 10.1371/journal.pone.0282026
Google Scholar
[21]
Shi, B., Yu, X., Pu, Y., Wang, D., A theoretical study on the filtration efficiency and dust clogging performance of pleated air filters. Heliyon. 9(7) (2023) e17944
DOI: 10.1016/j.heliyon.2023.e17944
Google Scholar
[22]
Loboichenko, V., Nikitina, N., Leonova, N., Konovalova, O., Bondarenko, A., Zemlianskyi, O., Rashkevich, N., Study of the features of determination of heavy metals in bottom sediments. In IOP Conference Series: Earth and Environmental Science. 1348 1 (2024) 012014. IOP Publishing.
DOI: 10.1088/1755-1315/1348/1/012014
Google Scholar
[23]
Medved, I., Rashkevich, N., Otrosh, Yu., Tomenko, V. Analysis of Experimental Studies of Titanium Alloy. Materials Science Forum. 1141 (2024) 35–42
DOI: 10.4028/p-rYw4RJ
Google Scholar
[24]
Li, L., Yin, J., Sun, T., Chen, J., Fu, Sh., Zhou, Y., Sun, Zh., Optimization design of pleated filter structure based on a simple theoretical model, Separation and Purification Technology. 360(2) (2025) 131067
DOI: 10.1016/j.seppur.2024.131067
Google Scholar
[25]
Teng, G., Shi, G. & Zhu, J. Influence of pleated geometry on the pressure drop of filters during dust loading process: experimental and modelling study. Sci Rep. 12 (2022) 20331
DOI: 10.1038/s41598-022-24838-7
Google Scholar
[26]
Chen, C.-W., Huang, Sh.-H., Chiang, C.-M., Hsiao, T.-C., Chen, C.-C., Filter Quality of Pleated Filter Cartridges, The Annals of Occupational Hygiene. 52(3) (2008) 207–212
DOI: 10.1093/annhyg/men008
Google Scholar
[27]
Persaud, D., Smirnov, M., Fong, D., Sanaei, P. Modeling of the Effects of Pleat Packing Density and Cartridge Geometry on the Performance of Pleated Membrane Filters. Fluids. 6(6) (2021) 209
DOI: 10.3390/fluids6060209
Google Scholar
[28]
Liu, X., Zhang, X., Liu, S., Liu, J., Chen, Q., Optimization of multi-V filter design for airliner environmental control system using an empirical model, Separation and Purification Technology. 257 (2021) 117966
DOI: 10.1016/j.seppur.2020.117966
Google Scholar
[29]
Li, L., Zhou, Y., Wang, Zh., Gu, H., Sun, Zh., Li, Y., Ma, S., Research on the filtration performance of pleated filters with rectangular and triangular structures through developed CFD code. Progress in Nuclear Energy. 153 (2022) 104413
DOI: 10.1016/j.pnucene.2022.104413
Google Scholar
[30]
Teng, G., Shi, G., Zhu, J., Qi, J., Zhao, C., Research on the influence of pleat structure on effective filtration area during dust loading, Powder Technology. 395 (2022) 207–217
DOI: 10.1016/j.powtec.2021.09.062
Google Scholar