The Optical and Radiation Shielding Characteristics of Lead-Free Glasses Activated with Barium Oxide

Article Preview

Abstract:

In this work, the glass formula (70-x)P2O5: 15NaF: 5ZnF2: 15AlF3: xBaO where x is 0, 5, 10, 15 mol% were manufactured by the conventional melt-quenching technique at 1200 °C in 3 hours for photon shielding application. The effect of glasses was examined on the physical, gamma ray and x-ray shielding properties. The results revealed that the density was increased with increasing of BaO concentrations. The glass systems were calculated by using the experiment set up for estimating the radiation shielding properties in the content of mass attenuation coefficients (μm), effective atomic number (Zeff), and effective electron density (Neff), which were increased when concentrations of BaO increased, while the half value layer (HVL) was decreased. For result of using the x-ray source, the linear attenuation (μ) was increased with an accrue in BaO concentration. The HVL was decreased when concentrations of BaO increased. The HVL values of glass samples at 15 mol% has better shielding behavior than the standard materials at 120 kVp. The BaO glass systems can be candidate for radiation shielding materials in the future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1162)

Pages:

41-46

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Wang, T. Qiu, L. Yuan, Q. Fang, X. Wang, X. Guo, D. Zhang, C. Lai, Q. Wang, Y. Liu, Rad. Phys. Chem., 208. (2023).

Google Scholar

[2] N. Chanthima, J. Kaewkhao, P. Limsuwan, Nucl. Ener., 41, 119-224. (2012)

Google Scholar

[3] K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Nucl. Ener., 39, 1438-1441. (2011)

Google Scholar

[4] N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Rad. Phys. Chem., 137, 72-77. (2017)

DOI: 10.1016/j.radphyschem.2016.03.015

Google Scholar

[5] S. Intom, E. Kalkornsurapranee, J. Johns, S. Kaewjaeng, S. Kothan, W. Hongtong, W.Chaiphaksa, J. Kaewkhao, Rad. Phys. Chem., 172. (2020).

DOI: 10.1016/j.radphyschem.2020.108772

Google Scholar

[6] S. Kaewjaeng, C. Jumpee, S. Kothan, J. Kaewkhao, N. Srisittipokakun, H.J. Kim, Mater, 17, 1774-1779. (2019)

DOI: 10.1016/j.matpr.2019.06.210

Google Scholar

[7] S.Y. Bukhvalova, N.F. Asmolova T.I. Lopatine, M.N., Bochkarev Rad. Phys. Chem., 182. (2021).

Google Scholar

[8] R. Rajaramakrishna, W. Chaiphaksa, Garima, Sharvani K. N., S. Kothan, & J. Kaewkhao, Phys. Status Solidi A, 2200411. (2022)

Google Scholar

[9] R.Rajaramakrishna, W.Chaiphaksa, S.Kaewjaeng, S.Kothan, J. Kaewkhao 289, 171273. (2021)

DOI: 10.1016/j.ijleo.2023.171273

Google Scholar

[10] P. Meejitpaisan, R. Doddoji, S. Kothan, C.K. Jayasankar, J. Kaewkhao, Optic. Lase. Tech., 141, 107170. (2021)

DOI: 10.1016/j.optlastec.2021.107170

Google Scholar

[11] P. Meejitpaisan, R. Doddoji, N. Luewarasirikul, H.J. Kim, S. Kothan, J. Kaewkhao, Inorg. Chem. Comm., 150, 110488. (2023)

DOI: 10.1016/j.inoche.2023.110488

Google Scholar

[12] P. Meejitpaisan, R. Doddoji, S. Kothan, C.K. Jayasankar, J. Kaewkhao, Cer. Inter., 47(2), 1962-1969. (2021)

Google Scholar

[13] S. Kaewjaeng, N. Wantana, S. Kothan, R. Rajaramakrishna, H.J. Kim, P. Limsuwan, J. Kaewkhao, Rad. Phys. Chem., 185, 109500.  (2021)

DOI: 10.1016/j.radphyschem.2021.109500

Google Scholar

[14] S. Kaewjaeng, S. Kothana, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, Rad. Phys. Chem., 160, 41–47. (2019)

DOI: 10.1016/j.radphyschem.2019.03.018

Google Scholar

[15] Wafa M. Al-Saleh, Mai R. H. Dahi, M. I. Sayyed, Haifa M. Almutairi, I. H. Saleh, Mohamed Elsafi, e-poly., 23: 20230096. (2023)

Google Scholar

[16] I.O. Olarinoye, R.I. Odiaga, S. Paul, 2019, EXABCal: s, Heliy. 5, e02017. (2019)

Google Scholar

[17] N. Karpuz, Rad. Resea. Appl. Sci. 16, 100689. (2023)

Google Scholar

[18] Z.N. Kuluöztürk, 2023 Radiation physics and chemistry, 212, 111172., Rad.Phys.Chem. (2023)

Google Scholar

[19] K.A. Mahmoud, O.L. Tashlykov, Aljawhara H. Almuqrin, M.I. Sayyed, S.G. Vlasova, Progr. Nucl. Ener., 146, 104169. (2022)

Google Scholar

[20] N. Karpuz, , Rad. Resea. Appl. Sci., 16, 100689. (2023)

Google Scholar

[21] Norah A.M. Alsaif, Youssef Elmahroug, B.M. Alotaibi, Haifa A. Alyousef, Najeh Rekik, A. Wahab M.A. Hussein, Ram Chand, Umer Farooq, 11:769-784. (2021)

Google Scholar

[22] M. Almatari, Energy Absorption and exposure bulidup factors for some bioactive glasses samples, Opto. Bio. Mate. 9 (2), 95 – 105. (2017)

Google Scholar

[23] D. Li, Y. Guo, G.Wang, L. Ge, Libra. , 9, 8679. (2022)

Google Scholar

[24] D. Salehi, D. Sardari, M.S. Jozani, 2015, Adva. Mater. Res., 4 (1) 23-30. (2015)

Google Scholar