[1]
B. Wang, T. Qiu, L. Yuan, Q. Fang, X. Wang, X. Guo, D. Zhang, C. Lai, Q. Wang, Y. Liu, Rad. Phys. Chem., 208. (2023).
Google Scholar
[2]
N. Chanthima, J. Kaewkhao, P. Limsuwan, Nucl. Ener., 41, 119-224. (2012)
Google Scholar
[3]
K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Nucl. Ener., 39, 1438-1441. (2011)
Google Scholar
[4]
N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Rad. Phys. Chem., 137, 72-77. (2017)
DOI: 10.1016/j.radphyschem.2016.03.015
Google Scholar
[5]
S. Intom, E. Kalkornsurapranee, J. Johns, S. Kaewjaeng, S. Kothan, W. Hongtong, W.Chaiphaksa, J. Kaewkhao, Rad. Phys. Chem., 172. (2020).
DOI: 10.1016/j.radphyschem.2020.108772
Google Scholar
[6]
S. Kaewjaeng, C. Jumpee, S. Kothan, J. Kaewkhao, N. Srisittipokakun, H.J. Kim, Mater, 17, 1774-1779. (2019)
DOI: 10.1016/j.matpr.2019.06.210
Google Scholar
[7]
S.Y. Bukhvalova, N.F. Asmolova T.I. Lopatine, M.N., Bochkarev Rad. Phys. Chem., 182. (2021).
Google Scholar
[8]
R. Rajaramakrishna, W. Chaiphaksa, Garima, Sharvani K. N., S. Kothan, & J. Kaewkhao, Phys. Status Solidi A, 2200411. (2022)
Google Scholar
[9]
R.Rajaramakrishna, W.Chaiphaksa, S.Kaewjaeng, S.Kothan, J. Kaewkhao 289, 171273. (2021)
DOI: 10.1016/j.ijleo.2023.171273
Google Scholar
[10]
P. Meejitpaisan, R. Doddoji, S. Kothan, C.K. Jayasankar, J. Kaewkhao, Optic. Lase. Tech., 141, 107170. (2021)
DOI: 10.1016/j.optlastec.2021.107170
Google Scholar
[11]
P. Meejitpaisan, R. Doddoji, N. Luewarasirikul, H.J. Kim, S. Kothan, J. Kaewkhao, Inorg. Chem. Comm., 150, 110488. (2023)
DOI: 10.1016/j.inoche.2023.110488
Google Scholar
[12]
P. Meejitpaisan, R. Doddoji, S. Kothan, C.K. Jayasankar, J. Kaewkhao, Cer. Inter., 47(2), 1962-1969. (2021)
Google Scholar
[13]
S. Kaewjaeng, N. Wantana, S. Kothan, R. Rajaramakrishna, H.J. Kim, P. Limsuwan, J. Kaewkhao, Rad. Phys. Chem., 185, 109500. (2021)
DOI: 10.1016/j.radphyschem.2021.109500
Google Scholar
[14]
S. Kaewjaeng, S. Kothana, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, Rad. Phys. Chem., 160, 41–47. (2019)
DOI: 10.1016/j.radphyschem.2019.03.018
Google Scholar
[15]
Wafa M. Al-Saleh, Mai R. H. Dahi, M. I. Sayyed, Haifa M. Almutairi, I. H. Saleh, Mohamed Elsafi, e-poly., 23: 20230096. (2023)
Google Scholar
[16]
I.O. Olarinoye, R.I. Odiaga, S. Paul, 2019, EXABCal: s, Heliy. 5, e02017. (2019)
Google Scholar
[17]
N. Karpuz, Rad. Resea. Appl. Sci. 16, 100689. (2023)
Google Scholar
[18]
Z.N. Kuluöztürk, 2023 Radiation physics and chemistry, 212, 111172., Rad.Phys.Chem. (2023)
Google Scholar
[19]
K.A. Mahmoud, O.L. Tashlykov, Aljawhara H. Almuqrin, M.I. Sayyed, S.G. Vlasova, Progr. Nucl. Ener., 146, 104169. (2022)
Google Scholar
[20]
N. Karpuz, , Rad. Resea. Appl. Sci., 16, 100689. (2023)
Google Scholar
[21]
Norah A.M. Alsaif, Youssef Elmahroug, B.M. Alotaibi, Haifa A. Alyousef, Najeh Rekik, A. Wahab M.A. Hussein, Ram Chand, Umer Farooq, 11:769-784. (2021)
Google Scholar
[22]
M. Almatari, Energy Absorption and exposure bulidup factors for some bioactive glasses samples, Opto. Bio. Mate. 9 (2), 95 – 105. (2017)
Google Scholar
[23]
D. Li, Y. Guo, G.Wang, L. Ge, Libra. , 9, 8679. (2022)
Google Scholar
[24]
D. Salehi, D. Sardari, M.S. Jozani, 2015, Adva. Mater. Res., 4 (1) 23-30. (2015)
Google Scholar