[1]
M. Atiyeh and E. Aydin, "Carbon-Fiber Enriched Cement-Based Composites for Better Sustainability," Materials (Basel)., vol. 13, no. 8, p.1899, Apr. 2020, doi:10.3390/ ma13081899.
DOI: 10.3390/ma13081899
Google Scholar
[2]
J. Thomas, N. N. Thaickavil, and T. N. Syamala, "Supplementary Cement Replacement Materials for Sustainable Concrete," 2019, p.387–403.
DOI: 10.1007/978-981-13-1202-1_33
Google Scholar
[3]
R. K. Ibrahim, R. Hamid, and M. R. Taha, "Fire resistance of high-volume fly ash mortars with nanosilica addition," Constr. Build. Mater., vol. 36, p.779–786, Nov. 2012.
DOI: 10.1016/j.conbuildmat.2012.05.028
Google Scholar
[4]
C. Meyer, "The greening of the concrete industry," Cem. Concr. Compos., vol. 31, no. 8, p.601–605, 2009.
DOI: 10.1016/j.cemconcomp.2008.12.010
Google Scholar
[5]
M. Arezoumandi, J. S. Volz, C. A. Ortega, and J. J. Myers, "Shear Behavior of High-Volume Fly Ash Concrete versus Conventional Concrete: Experimental Study," J. Struct. Eng., vol. 141, no. 3, Mar. 2015.
DOI: 10.1061/(ASCE)ST.1943-541X.0001003
Google Scholar
[6]
M. Reiner and K. Rens, "High-Volume Fly Ash Concrete: Analysis and Application," Pract. Period. Struct. Des. Constr., vol. 11, no. 1, p.58–64, Feb. 2006.
DOI: 10.1061/(asce)1084-0680(2006)11:1(58)
Google Scholar
[7]
A. Kaur, S. Bishnoi, and B. Bhattacharjee, "Characteristics of fly ashes in India for use in cement and concrete," Adv. Cem. Res., vol. 29, no. 6, p.258–268, Jun. 2017.
DOI: 10.1680/jadcr.16.00126
Google Scholar
[8]
B. A. Young, A. Hall, L. Pilon, P. Gupta, and G. Sant, "Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods," Cem. Concr. Res., vol. 115, p.379–388, Jan. 2019.
DOI: 10.1016/j.cemconres.2018.09.006
Google Scholar
[9]
R. Shahrin and C. P. Bobko, "Characterizing Strength and Failure of Calcium Silicate Hydrate Aggregates in Cement Paste under Micropillar Compression," J. Nanomechanics Micromechanics, vol. 7, no. 4, Dec. 2017.
DOI: 10.1061/(ASCE)NM.2153-5477.0000137
Google Scholar
[10]
I. M. A. K. Salain, "Effect of Water/Cement and Aggregate/Cement Ratios on Consistency and Compressive Strength of Concrete Using Volcanic Stone Waste as Aggregates," Civ. Eng. Archit., vol. 9, no. 6, p.1900–1908, Oct. 2021.
DOI: 10.13189/cea.2021.090621
Google Scholar
[11]
K. Senthil, Z. Kubba, R. Sharma, and A. Thakur, "Experimental and Numerical Investigation on Reinforced Concrete Slab under Low Velocity Impact Loading," IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p.012090, Mar. 2021.
DOI: 10.1088/1757-899X/1090/1/012090
Google Scholar
[12]
S. Das Adhikary, B. Li, and K. Fujikake, "State-of-the-art review on low-velocity impact response of reinforced concrete beams," Mag. Concr. Res., vol. 68, no. 14, p.701–723, Jul. 2016.
DOI: 10.1680/jmacr.15.00084
Google Scholar
[13]
A. Patchen, S. Young, L. Goodbred, S. Puplampu, V. Chawla, and D. Penumadu, "Lower Carbon Footprint Concrete Using Recycled Carbon Fiber for Targeted Strength and Insulation," Materials (Basel)., vol. 16, no. 15, p.5451, Aug. 2023.
DOI: 10.3390/ma16155451
Google Scholar
[14]
Z. Qin, D. Zheng, X. Li, and H. Wang, "Influence of Inertia on the Dynamic Compressive Strength of Concrete," Materials (Basel)., vol. 15, no. 20, p.7278, Oct. 2022.
DOI: 10.3390/ma15207278
Google Scholar
[15]
M. S. Morsy, Y. A. Al-Salloum, H. Abbas, and S. H. Alsayed, "Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures," Constr. Build. Mater., vol. 35, p.900–905, Oct. 2012.
DOI: 10.1016/j.conbuildmat.2012.04.099
Google Scholar
[16]
S. Ghani, N. Kumar, M. Gupta, and S. Saharan, "Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete," Asian J. Civ. Eng., vol. 25, no. 3, p.2743–2760, 2024.
DOI: 10.1007/s42107-023-00942-5
Google Scholar