Improving Concrete Durability Using Rice Husk Ash through Advanced Water-Binder Ratio Prediction with XAI-Enhanced Models

Article Preview

Abstract:

Accurately predicting the water-binder ratio (W/B ratio) is crucial for achieving rice husk ash supplemented concrete structures' desired strength and durability. This study introduces an innovative approach for W/B ratio prediction, utilizing cutting-edge machine learning algorithms in combination with Explainable Artificial Intelligence (XAI) techniques. The research employs hybrid ensemble learning models, including Random Forest (RF), CATBoost (CB), Whale Optimization Algorithm-optimized RF (RF-WOA), and Moth Flame Optimization-optimized CB (CB-MFOA). The results indicate that these hybridized models significantly outperform the standalone models (RF and CATBoost) and traditional empirical methods (feret’s law, Abram’s law and bolomey’s method), with the CB-MFOA model achieving the highest accuracy, demonstrated by an R-value of 0.9984 during the calibration phase. In the verification phase, the CB model excelled with an R-value of 0.966. In addition to model performance, the study integrates XAI methods to explain the predictions and identify the key factors influencing the w/b ratio. Cement was found to be the most critical variable, enhancing the accuracy of the CB-MFOA model. The findings confirm that the proposed method improves prediction precision and provides engineers with a reliable tool to optimize concrete mix designs, thereby improving the durability and sustainability of concrete. This research contributes to the broader field of concrete technology by advancing the application of AI-based solutions in civil engineering and related fields.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1162)

Pages:

85-94

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kishore, V. Bhikshma, and P. J. Prakash, "Study on Strength Characteristics of High Strength Rice Husk Ash Concrete," Procedia Eng., vol. 14, p.2666–2672, 2011.

DOI: 10.1016/j.proeng.2011.07.335

Google Scholar

[2] P. R. Rangan, R. Irmawaty, A. A. Amiruddin, and B. Bakri, "Compressive strength of laterite soil stabilized with rice straw ash and fly ash based geopolymer," IOP Conf. Ser. Earth Environ. Sci., vol. 419, no. 1, p.012026, Jan. 2020.

DOI: 10.1088/1755-1315/419/1/012026

Google Scholar

[3] A. Salas Montoya, C.-W. Chung, and J.-H. Kim, "High Performance Concretes with Highly Reactive Rice Husk Ash and Silica Fume," Materials (Basel)., vol. 16, no. 11, p.3903, May 2023.

DOI: 10.3390/ma16113903

Google Scholar

[4] K. C. Hover, "The influence of water on the performance of concrete," Constr. Build. Mater., vol. 25, no. 7, p.3003–3013, 2011.

DOI: 10.1016/j.conbuildmat.2011.01.010

Google Scholar

[5] A. M. Mansor, R. P. Borg, A. M. M Hamed, M. M. Gadeem, and M. M. Saeed, "The effects of water-cement ratio and chemical admixtures on the workability of concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 442, p.012017, Nov. 2018.

DOI: 10.1088/1757-899X/442/1/012017

Google Scholar

[6] B. Khasanov, N. Vatin, Z. Ismailova, and T. Mirzaev, "Physical modification of concrete mix and concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 883, no. 1, p.012205, Jul. 2020.

DOI: 10.1088/1757-899X/883/1/012205

Google Scholar

[7] D. Zheng et al., "Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence," Materials (Basel)., vol. 15, no. 15, p.5194, Jul. 2022.

DOI: 10.3390/ma15155194

Google Scholar

[8] R. M. N. de Assunção, B. Royer, J. S. Oliveira, G. Rodrigues Filho, and L. A. de Castro Motta, "Synthesis, characterization, and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete," J. Appl. Polym. Sci., vol. 96, no. 5, p.1534–1538, Jun. 2005.

DOI: 10.1002/app.21528

Google Scholar

[9] K. Kobayashi et al., "Data-Driven Multi-scale Modeling and Robust Optimization of Composite Structure with Uncertainty Quantification," in Handbook of Smart Energy Systems, Cham: Springer International Publishing, 2023, p.1333–1343.

DOI: 10.1007/978-3-030-97940-9_207

Google Scholar

[10] S. Abdelgader, M. Kurpinska, J. Khatib, and H. Abdelgader, "Concrete Mix Design Using Abrams and Bolomey Methods," BAU J. - Sci. Technol., vol. 4, no. 1, 2022.

DOI: 10.54729/mjps9917

Google Scholar

[11] A. Kargari, H. Eskandari-Naddaf, and R. Kazemi, "Effect of cement strength class on the generalization of Abrams' law," Struct. Concr., vol. 20, no. 1, p.493–505, 2019.

DOI: 10.1002/suco.201700275

Google Scholar

[12] J. de Brito, R. Kurda, and P. R. da Silva, "Can we truly predict the compressive strength of concrete without knowing the properties of aggregates?," Appl. Sci., vol. 8, no. 7, 2018.

DOI: 10.3390/app8071095

Google Scholar

[13] E. I. Nadelman and K. E. Kurtis, "Application of Powers' model to modern portland and portland limestone cement pastes," J. Am. Ceram. Soc., vol. 100, no. 9, p.4219–4231, 2017.

DOI: 10.1111/jace.14913

Google Scholar

[14] D. O. Nduka, B. J. Olawuyi, O. O. Joshua, and I. O. Omuh, "A Study on Gel/Space Ratio Development in Binary Mixture Containing Portland Cement and Meta-Illite Calcined Clay/Rice Husk Ash," Gels, vol. 8, no. 2, 2022.

DOI: 10.3390/gels8020085

Google Scholar

[15] Z. P. Bažant and L. J. Najjar, "Nonlinear water diffusion in nonsaturated concrete," Matériaux Constr., vol. 5, no. 1, p.3–20, 1972.

DOI: 10.1007/BF02479073

Google Scholar

[16] P. Krauss and T. Paret, " Review of Properties of Concrete , 5th Ed., by A. M. NevillePrentice Hall, Pearson, San Francisco, CA; 2012; ISBN 0273755803 and 978-0273755807; 846 pp.; $160 (paperback). ," J. Perform. Constr. Facil., vol. 28, no. 3, p.630–630, 2014.

DOI: 10.1061/(asce)cf.1943-5509.0000595

Google Scholar

[17] S. Ghani, N. Kumar, M. Gupta, and S. Saharan, "Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete," Asian J. Civ. Eng., vol. 25, no. 3, p.2743–2760, 2024.

DOI: 10.1007/s42107-023-00942-5

Google Scholar

[18] M. I. Khan and Y. M. Abbas, "Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete," Mater. Today Commun., vol. 35, no. January, p.105793, 2023.

DOI: 10.1016/j.mtcomm.2023.105793

Google Scholar

[19] S. I. Malami, F. H. Anwar, S. Abdulrahman, S. I. Haruna, S. I. A. Ali, and S. I. Abba, "Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique," Results Eng., vol. 10, no. December 2020, p.100228, 2021.

DOI: 10.1016/j.rineng.2021.100228

Google Scholar

[20] H. X. Mohammed, A. S. Mohammed, and A. M. T. Hassan, "Soft computing models to evaluate the effect of fly ash and ground granulated blast furnace slag (GGBS) on the compressive strength of concrete in normal and high strength ranges," Structures, vol. 58, no. October, p.105459, 2023.

DOI: 10.1016/j.istruc.2023.105459

Google Scholar

[21] F. Aslam and M. Zubair, "Supplementary cementitious materials in blended cement concrete : Advancements in predicting compressive strength through machine learning," Mater. Today Commun., vol. 38, no. October 2023, p.107725, 2024.

DOI: 10.1016/j.mtcomm.2023.107725

Google Scholar

[22] S. Wang et al., "Prediction and optimization model of sustainable concrete properties using machine learning , deep learning and swarm intelligence : A review," J. Build. Eng., vol. 80, no. October, p.108065, 2023.

DOI: 10.1016/j.jobe.2023.108065

Google Scholar

[23] H. Adel, M. I. Ghazaan, and A. H. Korayem, Machine learning applications for developing sustainable construction materials. Elsevier Inc., 2022.

DOI: 10.1016/B978-0-323-90508-4.00002-2

Google Scholar

[24] C. Qi, B. Huang, M. Wu, K. Wang, S. Yang, and G. Li, "Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer," Materials (Basel)., vol. 15, no. 15, 2022.

DOI: 10.3390/ma15155369

Google Scholar

[25] R. H. Faraj, A. A. Mohammed, and K. M. Omer, "Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques," Environ. Sci. Pollut. Res., vol. 29, no. 47, p.71338–71357, 2022.

DOI: 10.1007/s11356-022-20889-5

Google Scholar

[26] M. I. Shah, S. A. Memon, M. S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, "Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete," Adv. Civ. Eng., vol. 2021, 2021.

DOI: 10.1155/2021/6682283

Google Scholar

[27] M. M. Jibril et al., "Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concrete," Appl. Eng. Sci., vol. 15, no. April, p.100133, 2023.

DOI: 10.1016/j.apples.2023.100133

Google Scholar

[28] E. Li et al., "Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill," Eng. Comput., vol. 37, no. 4, p.3519–3540, 2021.

DOI: 10.1007/s00366-020-01014-x

Google Scholar

[29] Y. Dodo, K. Arif, M. Alyami, M. Ali, T. Najeh, and Y. Gamil, "Estimation of compressive strength of waste concrete utilizing fly ash/slag in concrete with interpretable approaches: optimization and graphical user interface (GUI)," Sci. Rep., vol. 14, no. 1, p.1–23, 2024.

DOI: 10.1038/s41598-024-54513-y

Google Scholar

[30] I. Thapa and S. Ghani, "Enhancing unconfined compressive strength prediction in nano-silica stabilized soil: a comparative analysis of ensemble and deep learning models," Model. Earth Syst. Environ., vol. 10, no. 4, p.5079–5102, Aug. 2024.

DOI: 10.1007/s40808-024-02052-w

Google Scholar

[31] A. Kumar et al., "Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models," Sustainability, vol. 14, no. 4, p.2404, Feb. 2022.

DOI: 10.3390/su14042404

Google Scholar

[32] G. Concrete et al., "Prediction of Mechanical Properties of Fly-Ash / Slag-Based," 2022.

Google Scholar

[33] B. Aldeen, A. Almahameed, and H. R. Sobuz, "The Role of Hybrid Machine Learning for Predicting Strength Behavior of Sustainable Concrete," vol. 11, no. 4, p.2012–2032, 2023.

DOI: 10.13189/cea.2023.110425

Google Scholar

[34] A. Kashem, R. Karim, P. Das, and S. Dip, "Case Studies in Construction Materials Compressive strength prediction of sustainable concrete incorporating rice husk ash ( RHA ) using hybrid machine learning algorithms and parametric analyses," vol. 20, no. January, p.1–26, 2024.

DOI: 10.1016/j.cscm.2024.e03030

Google Scholar

[35] S. Khursheed, J. Jagan, P. Samui, and S. Kumar, "Compressive strength prediction of fly ash concrete by using machine learning techniques," Innov. Infrastruct. Solut., vol. 6, no. 3, p.1–21, 2021.

DOI: 10.1007/s41062-021-00506-z

Google Scholar

[36] A. Ahmad et al., "Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm," Materials (Basel)., vol. 14, no. 4, p.794, Feb. 2021.

DOI: 10.3390/ma14040794

Google Scholar

[37] Y. Kellouche, B. Boukhatem, M. Ghrici, R. Rebouh, and A. Zidol, "Neural network model for predicting the carbonation depth of slag concrete," Asian J. Civ. Eng., vol. 22, no. 7, p.1401–1414, 2021.

DOI: 10.1007/s42107-021-00390-z

Google Scholar

[38] U. S. Biswal, M. Mishra, M. K. Singh, and D. Pasla, "Experimental investigation and comparative machine learning prediction of the compressive strength of recycled aggregate concrete incorporated with fly ash, GGBS, and metakaolin," Innov. Infrastruct. Solut., vol. 7, no. 4, p.1–20, 2022.

DOI: 10.1007/s41062-022-00844-6

Google Scholar

[39] M. Singh, P. Choudhary, A. K. Bedi, S. Yadav, and R. S. Chhabra, "Compressive Strength Estimation of Waste Marble Powder Incorporated Concrete Using Regression Modelling," Coatings, vol. 13, no. 1, p.1–17, 2023.

DOI: 10.3390/coatings13010066

Google Scholar

[40] Y. Jiang, H. Li, and Y. Zhou, "Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques," Buildings, vol. 12, no. 5, 2022.

DOI: 10.3390/buildings12050690

Google Scholar

[41] J. Huang et al., "Predicting the Compressive Strength of the Cement-Fly Ash – Slag Ternary Concrete Using the Firefly Algorithm ( FA )," 2022.

DOI: 10.3390/ma15124193

Google Scholar

[42] A. ElNemr, "Generating water/binder ratio -to- strength curves for cement mortar used in Masnory walls," Constr. Build. Mater., vol. 233, p.117249, 2020.

DOI: 10.1016/j.conbuildmat.2019.117249

Google Scholar

[43] A. Bashir, M. M. Jibril, U. M. Jibrin, S. I. Abba, and S. I. Malami, "A new strategy using intelligent hybrid learning for prediction of water binder ratio of concrete with rice husk ash as a supplementary cementitious material." Aug. 21, 2024.

DOI: 10.21203/rs.3.rs-4770030/v1

Google Scholar