[1]
R. Kishore, V. Bhikshma, and P. J. Prakash, "Study on Strength Characteristics of High Strength Rice Husk Ash Concrete," Procedia Eng., vol. 14, p.2666–2672, 2011.
DOI: 10.1016/j.proeng.2011.07.335
Google Scholar
[2]
P. R. Rangan, R. Irmawaty, A. A. Amiruddin, and B. Bakri, "Compressive strength of laterite soil stabilized with rice straw ash and fly ash based geopolymer," IOP Conf. Ser. Earth Environ. Sci., vol. 419, no. 1, p.012026, Jan. 2020.
DOI: 10.1088/1755-1315/419/1/012026
Google Scholar
[3]
A. Salas Montoya, C.-W. Chung, and J.-H. Kim, "High Performance Concretes with Highly Reactive Rice Husk Ash and Silica Fume," Materials (Basel)., vol. 16, no. 11, p.3903, May 2023.
DOI: 10.3390/ma16113903
Google Scholar
[4]
K. C. Hover, "The influence of water on the performance of concrete," Constr. Build. Mater., vol. 25, no. 7, p.3003–3013, 2011.
DOI: 10.1016/j.conbuildmat.2011.01.010
Google Scholar
[5]
A. M. Mansor, R. P. Borg, A. M. M Hamed, M. M. Gadeem, and M. M. Saeed, "The effects of water-cement ratio and chemical admixtures on the workability of concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 442, p.012017, Nov. 2018.
DOI: 10.1088/1757-899X/442/1/012017
Google Scholar
[6]
B. Khasanov, N. Vatin, Z. Ismailova, and T. Mirzaev, "Physical modification of concrete mix and concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 883, no. 1, p.012205, Jul. 2020.
DOI: 10.1088/1757-899X/883/1/012205
Google Scholar
[7]
D. Zheng et al., "Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence," Materials (Basel)., vol. 15, no. 15, p.5194, Jul. 2022.
DOI: 10.3390/ma15155194
Google Scholar
[8]
R. M. N. de Assunção, B. Royer, J. S. Oliveira, G. Rodrigues Filho, and L. A. de Castro Motta, "Synthesis, characterization, and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete," J. Appl. Polym. Sci., vol. 96, no. 5, p.1534–1538, Jun. 2005.
DOI: 10.1002/app.21528
Google Scholar
[9]
K. Kobayashi et al., "Data-Driven Multi-scale Modeling and Robust Optimization of Composite Structure with Uncertainty Quantification," in Handbook of Smart Energy Systems, Cham: Springer International Publishing, 2023, p.1333–1343.
DOI: 10.1007/978-3-030-97940-9_207
Google Scholar
[10]
S. Abdelgader, M. Kurpinska, J. Khatib, and H. Abdelgader, "Concrete Mix Design Using Abrams and Bolomey Methods," BAU J. - Sci. Technol., vol. 4, no. 1, 2022.
DOI: 10.54729/mjps9917
Google Scholar
[11]
A. Kargari, H. Eskandari-Naddaf, and R. Kazemi, "Effect of cement strength class on the generalization of Abrams' law," Struct. Concr., vol. 20, no. 1, p.493–505, 2019.
DOI: 10.1002/suco.201700275
Google Scholar
[12]
J. de Brito, R. Kurda, and P. R. da Silva, "Can we truly predict the compressive strength of concrete without knowing the properties of aggregates?," Appl. Sci., vol. 8, no. 7, 2018.
DOI: 10.3390/app8071095
Google Scholar
[13]
E. I. Nadelman and K. E. Kurtis, "Application of Powers' model to modern portland and portland limestone cement pastes," J. Am. Ceram. Soc., vol. 100, no. 9, p.4219–4231, 2017.
DOI: 10.1111/jace.14913
Google Scholar
[14]
D. O. Nduka, B. J. Olawuyi, O. O. Joshua, and I. O. Omuh, "A Study on Gel/Space Ratio Development in Binary Mixture Containing Portland Cement and Meta-Illite Calcined Clay/Rice Husk Ash," Gels, vol. 8, no. 2, 2022.
DOI: 10.3390/gels8020085
Google Scholar
[15]
Z. P. Bažant and L. J. Najjar, "Nonlinear water diffusion in nonsaturated concrete," Matériaux Constr., vol. 5, no. 1, p.3–20, 1972.
DOI: 10.1007/BF02479073
Google Scholar
[16]
P. Krauss and T. Paret, " Review of Properties of Concrete , 5th Ed., by A. M. NevillePrentice Hall, Pearson, San Francisco, CA; 2012; ISBN 0273755803 and 978-0273755807; 846 pp.; $160 (paperback). ," J. Perform. Constr. Facil., vol. 28, no. 3, p.630–630, 2014.
DOI: 10.1061/(asce)cf.1943-5509.0000595
Google Scholar
[17]
S. Ghani, N. Kumar, M. Gupta, and S. Saharan, "Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete," Asian J. Civ. Eng., vol. 25, no. 3, p.2743–2760, 2024.
DOI: 10.1007/s42107-023-00942-5
Google Scholar
[18]
M. I. Khan and Y. M. Abbas, "Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete," Mater. Today Commun., vol. 35, no. January, p.105793, 2023.
DOI: 10.1016/j.mtcomm.2023.105793
Google Scholar
[19]
S. I. Malami, F. H. Anwar, S. Abdulrahman, S. I. Haruna, S. I. A. Ali, and S. I. Abba, "Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique," Results Eng., vol. 10, no. December 2020, p.100228, 2021.
DOI: 10.1016/j.rineng.2021.100228
Google Scholar
[20]
H. X. Mohammed, A. S. Mohammed, and A. M. T. Hassan, "Soft computing models to evaluate the effect of fly ash and ground granulated blast furnace slag (GGBS) on the compressive strength of concrete in normal and high strength ranges," Structures, vol. 58, no. October, p.105459, 2023.
DOI: 10.1016/j.istruc.2023.105459
Google Scholar
[21]
F. Aslam and M. Zubair, "Supplementary cementitious materials in blended cement concrete : Advancements in predicting compressive strength through machine learning," Mater. Today Commun., vol. 38, no. October 2023, p.107725, 2024.
DOI: 10.1016/j.mtcomm.2023.107725
Google Scholar
[22]
S. Wang et al., "Prediction and optimization model of sustainable concrete properties using machine learning , deep learning and swarm intelligence : A review," J. Build. Eng., vol. 80, no. October, p.108065, 2023.
DOI: 10.1016/j.jobe.2023.108065
Google Scholar
[23]
H. Adel, M. I. Ghazaan, and A. H. Korayem, Machine learning applications for developing sustainable construction materials. Elsevier Inc., 2022.
DOI: 10.1016/B978-0-323-90508-4.00002-2
Google Scholar
[24]
C. Qi, B. Huang, M. Wu, K. Wang, S. Yang, and G. Li, "Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer," Materials (Basel)., vol. 15, no. 15, 2022.
DOI: 10.3390/ma15155369
Google Scholar
[25]
R. H. Faraj, A. A. Mohammed, and K. M. Omer, "Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques," Environ. Sci. Pollut. Res., vol. 29, no. 47, p.71338–71357, 2022.
DOI: 10.1007/s11356-022-20889-5
Google Scholar
[26]
M. I. Shah, S. A. Memon, M. S. Khan Niazi, M. N. Amin, F. Aslam, and M. F. Javed, "Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete," Adv. Civ. Eng., vol. 2021, 2021.
DOI: 10.1155/2021/6682283
Google Scholar
[27]
M. M. Jibril et al., "Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concrete," Appl. Eng. Sci., vol. 15, no. April, p.100133, 2023.
DOI: 10.1016/j.apples.2023.100133
Google Scholar
[28]
E. Li et al., "Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill," Eng. Comput., vol. 37, no. 4, p.3519–3540, 2021.
DOI: 10.1007/s00366-020-01014-x
Google Scholar
[29]
Y. Dodo, K. Arif, M. Alyami, M. Ali, T. Najeh, and Y. Gamil, "Estimation of compressive strength of waste concrete utilizing fly ash/slag in concrete with interpretable approaches: optimization and graphical user interface (GUI)," Sci. Rep., vol. 14, no. 1, p.1–23, 2024.
DOI: 10.1038/s41598-024-54513-y
Google Scholar
[30]
I. Thapa and S. Ghani, "Enhancing unconfined compressive strength prediction in nano-silica stabilized soil: a comparative analysis of ensemble and deep learning models," Model. Earth Syst. Environ., vol. 10, no. 4, p.5079–5102, Aug. 2024.
DOI: 10.1007/s40808-024-02052-w
Google Scholar
[31]
A. Kumar et al., "Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models," Sustainability, vol. 14, no. 4, p.2404, Feb. 2022.
DOI: 10.3390/su14042404
Google Scholar
[32]
G. Concrete et al., "Prediction of Mechanical Properties of Fly-Ash / Slag-Based," 2022.
Google Scholar
[33]
B. Aldeen, A. Almahameed, and H. R. Sobuz, "The Role of Hybrid Machine Learning for Predicting Strength Behavior of Sustainable Concrete," vol. 11, no. 4, p.2012–2032, 2023.
DOI: 10.13189/cea.2023.110425
Google Scholar
[34]
A. Kashem, R. Karim, P. Das, and S. Dip, "Case Studies in Construction Materials Compressive strength prediction of sustainable concrete incorporating rice husk ash ( RHA ) using hybrid machine learning algorithms and parametric analyses," vol. 20, no. January, p.1–26, 2024.
DOI: 10.1016/j.cscm.2024.e03030
Google Scholar
[35]
S. Khursheed, J. Jagan, P. Samui, and S. Kumar, "Compressive strength prediction of fly ash concrete by using machine learning techniques," Innov. Infrastruct. Solut., vol. 6, no. 3, p.1–21, 2021.
DOI: 10.1007/s41062-021-00506-z
Google Scholar
[36]
A. Ahmad et al., "Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm," Materials (Basel)., vol. 14, no. 4, p.794, Feb. 2021.
DOI: 10.3390/ma14040794
Google Scholar
[37]
Y. Kellouche, B. Boukhatem, M. Ghrici, R. Rebouh, and A. Zidol, "Neural network model for predicting the carbonation depth of slag concrete," Asian J. Civ. Eng., vol. 22, no. 7, p.1401–1414, 2021.
DOI: 10.1007/s42107-021-00390-z
Google Scholar
[38]
U. S. Biswal, M. Mishra, M. K. Singh, and D. Pasla, "Experimental investigation and comparative machine learning prediction of the compressive strength of recycled aggregate concrete incorporated with fly ash, GGBS, and metakaolin," Innov. Infrastruct. Solut., vol. 7, no. 4, p.1–20, 2022.
DOI: 10.1007/s41062-022-00844-6
Google Scholar
[39]
M. Singh, P. Choudhary, A. K. Bedi, S. Yadav, and R. S. Chhabra, "Compressive Strength Estimation of Waste Marble Powder Incorporated Concrete Using Regression Modelling," Coatings, vol. 13, no. 1, p.1–17, 2023.
DOI: 10.3390/coatings13010066
Google Scholar
[40]
Y. Jiang, H. Li, and Y. Zhou, "Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques," Buildings, vol. 12, no. 5, 2022.
DOI: 10.3390/buildings12050690
Google Scholar
[41]
J. Huang et al., "Predicting the Compressive Strength of the Cement-Fly Ash – Slag Ternary Concrete Using the Firefly Algorithm ( FA )," 2022.
DOI: 10.3390/ma15124193
Google Scholar
[42]
A. ElNemr, "Generating water/binder ratio -to- strength curves for cement mortar used in Masnory walls," Constr. Build. Mater., vol. 233, p.117249, 2020.
DOI: 10.1016/j.conbuildmat.2019.117249
Google Scholar
[43]
A. Bashir, M. M. Jibril, U. M. Jibrin, S. I. Abba, and S. I. Malami, "A new strategy using intelligent hybrid learning for prediction of water binder ratio of concrete with rice husk ash as a supplementary cementitious material." Aug. 21, 2024.
DOI: 10.21203/rs.3.rs-4770030/v1
Google Scholar