[1]
Ali, R. (2020). Predictive Modeling: Types, Benefits, and Algorithms. Retrieved from Oracle Netsuite: https://www. netsuite. Com/portal/resource/articles/financial management/predictive-modeling. html.
Google Scholar
[2]
Hernandez, R., Bender, D. A., Richburg, B. A., and Kline, K. S. (1992). Probabilistic Modeling of Glued-Laminated Timber Beams. Wood and fiber science, 294-306.
Google Scholar
[3]
Reinprecht, L., Ciglian, D., Iždinský, J., &Sedliačik, J. (2022). Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams. Applied Sciences, 12(24), 12872.
DOI: 10.3390/app122412872
Google Scholar
[4]
Owoyemi, J.M., Olaniran, S.O., and Aliyu, D.I., (2013). Effect of density on the natural resistance of ten selected Nigerian wood species to subterranean termites. Pro Lingo (1).
Google Scholar
[5]
Alayande, T. A., Ede, A. N., Aguwa, J. I., Ofuyatan, O. M., Oyebisi, S. O., &Oluwafemi, J. O. (2019, December). Reliability Assessment of the Nigerian Timber–An Environmental Sustainability Approach in the 21st Century. In Journal of Physics: Conference Series (Vol. 1378, No. 3, p.032053). IOP Publishing.
DOI: 10.1088/1742-6596/1378/3/032053
Google Scholar
[6]
Ekundayo, O. O., Arum, C., &Owoyemi, J. M. (2020). Forest Product Industry and Engineered Wood Products: The Nigerian Experience. Journal of Applied Sciences and Environmental Management, 25(1), 93-97.
DOI: 10.4314/jasem.v25i1.14
Google Scholar
[7]
Camú, C. T., & Aicher, S. (2018, August). A stochastic finite element model for glulam beams of hardwoods. In World Conference on Timber Engineering, Seul.
Google Scholar
[8]
Frese, M., &Blaß, H. J. (2009). Bending strength of spruce glulam. European Journal of Wood and Wood Products, 67(3), 277-286.
DOI: 10.1007/s00107-009-0316-2
Google Scholar
[9]
Lee, J. J., Park, J. S., Kim, K. M., and Oh, J. K. (2005). Prediction of Bending Properties for Structural Glulam using Optimized Distributions of Knot Characteristics and Laminar MOE. Journal of wood science, 51(6), 640-647.
DOI: 10.1007/s10086-005-0704-0
Google Scholar
[10]
Gao, Y., Wu, Y., Zhu, X., Zhu, L., Yu, Z., & Wu, Y. (2015). Numerical analysis of the bending properties of cathay poplar glulam. Materials, 8(10), 7059-7073.
DOI: 10.3390/ma8105362
Google Scholar
[11]
Kashaboina, M. (2021, June 26). Predictive Analytics — Model Predictions And Their Interpretability Challenges. Towards Data Science. Retrieved January 12, 2023, from https://towardsdatascience.com/predictive-analytics-model-predictions-and-their-interpretability-challenges-acbb8ff44b3f
Google Scholar
[12]
Frese, M., &Blaß, H. J. (2007). Characteristic bending strength of beech glulam. Materials and structures, 40(1), 3-13.
DOI: 10.1617/s11527-006-9117-9
Google Scholar
[13]
Timbolmas, C., Bravo, R., Rescalvo, F. J., &Gallego, A. (2022). Development of an analytical model to predict the bending behavior of composite glulam beams in tension and compression. Journal of Building Engineering, 45, 103471.
DOI: 10.1016/j.jobe.2021.103471
Google Scholar
[14]
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, 11(2), 105-111.
Google Scholar
[15]
Frake (2021): retrieved from https://www.tropix.cirad
Google Scholar
[16]
Blomberg, J., Persson, B., and Blomberg A. (2005). Effects of Semi-isostatic Densification of Wood on the Variation in Strength Properties with Density. Wood Science and Technology, 39(5), 339-350.
DOI: 10.1007/s00226-005-0290-8
Google Scholar
[17]
Burdurlu, E., Kilic, M., Ilce, A. C., and Uzunkavak, O. (2007). The Effects of Ply Organization and Loading Direction on Bending Strength and Modulus of Elasticity in Laminated Veneer Lumber (LVL) Obtained from Beech (Fagusorientalis L.) and Lombardy Poplar (Populusnigra L.). Construction and Building Materials, 21(8), 1720-1725
DOI: 10.1016/j.conbuildmat.2005.05.002
Google Scholar
[18]
Kılıç, M. (2011). The effects of the force loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL). BioResources, 6(3), 2805-2817.
DOI: 10.15376/biores.6.3.2805-2817
Google Scholar
[19]
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ane. 0000000000002864
DOI: 10.1213/ane.0000000000002864
Google Scholar
[20]
Bal, B. C., and Bektaş, İ. (2012). The Effects of Wood Species, Load Direction, and Adhesives on Bending Properties of Laminated Veneer Lumber. Bioresources, 7(3), 3104-3112.
DOI: 10.15376/biores.7.3.3104-3112
Google Scholar
[21]
Komariah, R. N., Hadi, Y. S., Massijaya, M. Y., and Suryana, J. (2015). Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia. Journal of the Korean Wood Science and Technology, 43(2), 156-167.
DOI: 10.5658/wood.2015.43.2.156
Google Scholar