Morphological Changes in ZnO Nano- and Microstructures Synthesized by Pyrolytic Technology

Article Preview

Abstract:

Pyrolytic technology was developed to grow Zn-based nano- and microstructures. It was based on the application of a mixture of ammonium chloride, Zn and ZnO powders as source materials. Two temperature profiles were used for the synthesis. In the first and second growth processes, the maximum substrate temperatures of 250 and 410°C were reached, respectively. The granular layer of micrometer range ZnO crystals was produced in the first process. By depleting the source with NH4Cl, the Zn polyhedra, and layered spheres were produced within 50–65 min in the second process. By increasing the NH4Cl content in the source to 0.9 g, the Zn/ZnO core–shell spheres were synthesized. The further increase of process duration led to the out-diffusion of Zn from the core, its oxidation, and the formation of a thick, dense ZnO spherical shell. Even further annealing in residual gases caused the increase of the Zn vapor pressure inside the shell. As a result, at a certain Zn vapor pressure, the shell bursts, causing the formation of a hollow ZnO microsphere.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

71-81

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Maruccia, S. Galliano, E. Schiavo, N. Garino, A.Y.S. Zarate, A.B. Munoz–Garcia, M. Pavone, C. Gerbaldi, C. Barolo, V. Cauda, F. Bella, Exploring zinc oxide morphologies for aqueous solar cells by a photoelectrochemical, computational, and multivariate approach, Energy Adv. 3 (2024) 1062-1072.

DOI: 10.1039/d4ya00010b

Google Scholar

[2] A.F. Gouveia, S.C.S. Lemos, E.R. Leite, E. Longo, J. Andres, Back to the basics: Probing the role of surfaces in the experimentally observed morphological evolution of ZnO, Nanomaterials 13 (2023) 978 (1-15).

DOI: 10.3390/nano13060978

Google Scholar

[3] H.F. Wilson, Ch. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies, J. Phys. Chem. C 120 (2016) 9498-9505.

DOI: 10.1021/acs.jpcc.6b01479

Google Scholar

[4] A. Fallatah, M. Kuku, L. Alqahtani, A. Bubshait, N.S. Almutairi, S. Padalkar, A.M. Alotaibi, Role of morphology on zinc oxide nanostructures for efficient photoelectrochemical activity and hydrogen production, Materials 17 (2024) 5135 (1-15).

DOI: 10.3390/ma17205135

Google Scholar

[5] S.K. Jha, A. Mishra, A comprehensive review on nanoflowers: Synthesis, characterization and applications, Int. J. Multidiscip. Res. 6 (2024) 1-20.

Google Scholar

[6] A.A. Ansari, R. Lv, S. Gai, A.K. Parchur, P.R. Solanki, Archana, Z.A. Ansari, M. Dhayal, P. Yang, M.K. Nazeeruddin, M.M. Tavakoli, ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics, Coord. Chem. Rev. 515 (2024) 215942 (1-55).

DOI: 10.1016/j.ccr.2024.215942

Google Scholar

[7] A. Galdamez–Martinez, G. Santana, F. Guell, P.R. Martinez–Alanis, A. Dutt, Photoluminescence of ZnO nanowires: A review, Nanomaterials 10 (2020) 857 (1-23).

DOI: 10.3390/nano10050857

Google Scholar

[8] A. Barzinjy, S. Hamad, H. Azeez, Structure, synthesis and applications of ZnO nanoparticles: A review, Jordan J. Appl. Sci. 13 (2020) 123-135.

Google Scholar

[9] J. Piqueras, P. Hidalgo, Growth of metal oxide nanostructures by thermal oxidation of metals under influence of external electric fields and electric current flow, Physica Status Solidi A (2021) 2100323 (1-8).

DOI: 10.1002/pssa.202100323

Google Scholar

[10] M.A. Borysiewicz, ZnO as a functional material, a review, Crystals 9 (2019) 505-529.

Google Scholar

[11] V. Cauda, R. Gazia, S. Porro, S. Stassi, G. Canavese, I. Roppolo, A. Chiolerio, Nanostructured ZnO materials: Synthesis, properties and applications, in: B. Bhushan, D. Luo, S. Schricker, W. Sigmund, S. Zauscher (Eds.), Handbook of Nanomaterials Properties, Springer, Berlin–Heidelberg, 2014, pp.137-177.

DOI: 10.1007/978-3-642-31107-9_32

Google Scholar

[12] N.D. Dien, Preparation of various morphologies of ZnO nanostructure through wet chemical methods, Adv. Mater. Sci. 4 (2019) 1-5.

DOI: 10.15761/ams.1000147

Google Scholar

[13] Y. Ding, Z.L. Wang, T. Sun, J. Qiu, Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires, Appl. Phys. Lett. 90 (2007) 153510 (1-3).

DOI: 10.1063/1.2722671

Google Scholar

[14] X. Chang, S. Vijay, Y. Zhao, N. J. Oliveira, K. Chan, B. Xu, Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction, Nat. Commun. 13 (2022) 2656 (1-12).

DOI: 10.1038/s41467-022-30262-2

Google Scholar

[15] Y. Jiao, Y. Pan, M. Yang, Zh. Li, J. Yu, R. Fu, B. Man, C. Zhang, X. Zhao, Micro–nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics, Nanophotonics 13 (2024) 307-318.

DOI: 10.1515/nanoph-2023-0659

Google Scholar

[16] X. Zhou, W. Feng, C. Wang, H. Xiaolong, X. Li, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Porous ZnO/ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing, J. Mater. Chem. A 2 (2014) 17683 (1-8).

DOI: 10.1039/c4ta04386c

Google Scholar

[17] S.K. Guang, X. J. Xie, J. Zheng, Y.N. Wang, Y.F. Guo, C. Cheng, Y. Wu, X.Y. Zheng, C.C. Wang, Synthesis of hierarchical ZnO/C hollow spheres constructed by octahedron for water treatment, J. Mater. Sci. 55 (2020) 11938-11948.

DOI: 10.1007/s10853-020-04879-x

Google Scholar

[18] L.A. Zadorozhnaya, A.P. Tarasov, V.M. Kanevsky, The growth mechanism, luminescence, and lasing of polyhedral ZnO microcrystals with whispering-gallery modes, Photonics 10 (2023) 1328 (1-12).

DOI: 10.3390/photonics10121328

Google Scholar

[19] T.H.B. Ngo, Y.C. Chang, Whispering gallery modes in hybrid Au–ZnO microsphere resonators: Experimental and theoretical investigations, Opt. Mater. Express 7 (2017) 2962-2967.

DOI: 10.1364/ome.7.002962

Google Scholar

[20] Y. Liu, C. Xu, Z. Zhu, D. You, R. Wang, F. Qin, X. Wang, Q. Cui, Z. Shi, Controllable fabrication of ZnO microspheres for whispering gallery mode microcavity, Cryst. Growth Des. 18 (2018) 5279-5286.

DOI: 10.1021/acs.cgd.8b00716

Google Scholar

[21] V.A. Borisov, A.N. D'yachenko, R.I. Kraidenko, Reaction of zinc oxide with ammonium chloride, Russian J. Inorg. Chem. 57 (2012) 499-501.

DOI: 10.1134/s0036023612040043

Google Scholar

[22] S.-H. Na, Ch-H. Park, First-principles study of the surface of wurtzite ZnO and ZnS – Implications for nanostructure formation, J. Korean Phys. Soc. 54 (2009) 867-872.

DOI: 10.3938/jkps.54.867

Google Scholar

[23] H.F. Wilson, Ch. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies, Phys. Chem. C. 120 (2016) 9498-9505.

DOI: 10.1021/acs.jpcc.6b01479

Google Scholar

[24] V. Jabbari, T. Foroozan, R. Shahbazian–Yassar, Dendritic Zn deposition in zinc-metal batteries and mitigation strategies, Adv. Energy Sustainability Res. 2 (2021) 2000082 (1-15).

DOI: 10.1002/aesr.202000082

Google Scholar

[25] P.X. Gao, Ch.Sh. Lao, Y. Ding, Z.L. Wang, Metal/semiconductor core/shell nanodisks and nanotubes, Adv. Funct. Mater. 16 (2006) 53-62.

DOI: 10.1002/adfm.200500301

Google Scholar

[26] Ch.F. Guo, Y. Wang, P. Jiang, S. Cao, J. Miao, Zh. Zhang, Q. Liu, Zinc oxide nanostructures: Epitaxially growing from hexagonal zinc nanostructures, Nanotechnology 19 (2008) 445710 (1-8).

DOI: 10.1088/0957-4484/19/44/445710

Google Scholar

[27] L. Ren, Zh. Hub, Ch. Peng, L. Zhang, N. Wang, F. Wang, Y. Xi, S. Zhang, E. Hu, J. Luo, Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries, Proc. Natl. Acad. Sci. USA 121 (2024) e2309981121 (1-9).

DOI: 10.1073/pnas.2309981121

Google Scholar

[28] T. Shen, T. Wei, Sh. Zhang, H. Liu, Ch. Li, Zh. Li, M. Yang, Ch. Liu, Y. P. Single, Crystalline Zn(002) facet enables ultrastable anode–electrolyte interface, Small Str. 6 (2025) 2400325 (1-7).

DOI: 10.1002/sstr.202400325

Google Scholar

[29] L. Kabalan, I. Kowalec, C. Richard, A. Catlow, A.J. Logsdail, A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces, Phys. Chem. Chem. Phys. 23 (2021) 14649 (1-13).

DOI: 10.1039/d1cp01602d

Google Scholar

[30] H.A. Wriedt, The O–Zn (oxygen–zinc) system, J. Phase Equilibrium 8 (1987) 166-167.

Google Scholar

[31] C.B. Alcock, Vapor pressure of the metallic elements, in: CRC Handbook of Chemistry and Physics, 83rd ed., CRC Press, Boca Raton, 2002–2003, p.4.134-4.136.

Google Scholar

[32] C.L. Yaws, The Yaws Handbook of Vapor Pressure. Antoine Coefficients, 2nd ed., Gulf Professional Publ., Oxford–Waltham, 2015.

Google Scholar

[33] L. Castaneda, Synthesis and characterization of ZnO micro- and nano-cages, Acta Materialia 57 (2009) 1385-1391.

DOI: 10.1016/j.actamat.2008.11.022

Google Scholar

[34] P. X. Gao, Zh.L. Wang, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals, J. American Chem. Soc. 125 (2003) 11299-11305.

DOI: 10.1021/ja035569p

Google Scholar

[35] H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias, U. Gosele, Growth mechanism and characterization of zinc oxide microcages, Solid State Commun. 130 (2004) 517-521.

DOI: 10.1016/j.ssc.2004.03.014

Google Scholar

[36] J .Q. Hu, Q. Li, X.M. Men, C.S. Lee, S.T. Lee, Thermal reduction route to the fabrication coaxial Zn/ZnO nanocables and nanotubes, Chem. Mater. 15 (2003) 305-308.

DOI: 10.1021/cm020649y

Google Scholar

[37] X.Y. Kong, Y. Ding, Z.L. Wang, Metal–semiconductor Zn–ZnO core–shell nanobelts and nanotubes, J. Phys. Chem. B 108 (2004) 570-574.

DOI: 10.1021/jp036993f

Google Scholar

[38] Ch.-Y. Hsu, K.-H. Chang, J.-A. Gong, J. Tiren, Y.-Y. Liab, A. Sakoda, Kirkendall void formation and selective directional growth of urchin-like ZnO/Zn microspheres through thermal oxidation in air, RSC Adv. 5 (2015) 103884-103894.

DOI: 10.1039/c5ra19168h

Google Scholar

[39] A.-A. El Mel, R. Nakamura, C. Bittencourt, The Kirkendall effect and nanoscience: Hollow nanospheres and nanotubes, Beilstein J. Nanotechnol. 6 (2015) 1348-1361.

DOI: 10.3762/bjnano.6.139

Google Scholar

[40] R.D. Vais, H. Heli, The Kirkendall effect: Its efficacy in the formation of hollow nanostructures, J. Biol. Today's World. 5 (2016) 137-149.

DOI: 10.15412/j.jbtw.01050802

Google Scholar

[41] D. Weibel, Z.R. Jovanovic, E. Galvez, A. Steinfeld, Mechanism of Zn particle oxidation by H2O and CO2 in the presence of ZnO, Chem. Mater. 26 (2014) 6486-6495.

DOI: 10.1021/cm503064f

Google Scholar