[1]
E. Maruccia, S. Galliano, E. Schiavo, N. Garino, A.Y.S. Zarate, A.B. Munoz–Garcia, M. Pavone, C. Gerbaldi, C. Barolo, V. Cauda, F. Bella, Exploring zinc oxide morphologies for aqueous solar cells by a photoelectrochemical, computational, and multivariate approach, Energy Adv. 3 (2024) 1062-1072.
DOI: 10.1039/d4ya00010b
Google Scholar
[2]
A.F. Gouveia, S.C.S. Lemos, E.R. Leite, E. Longo, J. Andres, Back to the basics: Probing the role of surfaces in the experimentally observed morphological evolution of ZnO, Nanomaterials 13 (2023) 978 (1-15).
DOI: 10.3390/nano13060978
Google Scholar
[3]
H.F. Wilson, Ch. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies, J. Phys. Chem. C 120 (2016) 9498-9505.
DOI: 10.1021/acs.jpcc.6b01479
Google Scholar
[4]
A. Fallatah, M. Kuku, L. Alqahtani, A. Bubshait, N.S. Almutairi, S. Padalkar, A.M. Alotaibi, Role of morphology on zinc oxide nanostructures for efficient photoelectrochemical activity and hydrogen production, Materials 17 (2024) 5135 (1-15).
DOI: 10.3390/ma17205135
Google Scholar
[5]
S.K. Jha, A. Mishra, A comprehensive review on nanoflowers: Synthesis, characterization and applications, Int. J. Multidiscip. Res. 6 (2024) 1-20.
Google Scholar
[6]
A.A. Ansari, R. Lv, S. Gai, A.K. Parchur, P.R. Solanki, Archana, Z.A. Ansari, M. Dhayal, P. Yang, M.K. Nazeeruddin, M.M. Tavakoli, ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics, Coord. Chem. Rev. 515 (2024) 215942 (1-55).
DOI: 10.1016/j.ccr.2024.215942
Google Scholar
[7]
A. Galdamez–Martinez, G. Santana, F. Guell, P.R. Martinez–Alanis, A. Dutt, Photoluminescence of ZnO nanowires: A review, Nanomaterials 10 (2020) 857 (1-23).
DOI: 10.3390/nano10050857
Google Scholar
[8]
A. Barzinjy, S. Hamad, H. Azeez, Structure, synthesis and applications of ZnO nanoparticles: A review, Jordan J. Appl. Sci. 13 (2020) 123-135.
Google Scholar
[9]
J. Piqueras, P. Hidalgo, Growth of metal oxide nanostructures by thermal oxidation of metals under influence of external electric fields and electric current flow, Physica Status Solidi A (2021) 2100323 (1-8).
DOI: 10.1002/pssa.202100323
Google Scholar
[10]
M.A. Borysiewicz, ZnO as a functional material, a review, Crystals 9 (2019) 505-529.
Google Scholar
[11]
V. Cauda, R. Gazia, S. Porro, S. Stassi, G. Canavese, I. Roppolo, A. Chiolerio, Nanostructured ZnO materials: Synthesis, properties and applications, in: B. Bhushan, D. Luo, S. Schricker, W. Sigmund, S. Zauscher (Eds.), Handbook of Nanomaterials Properties, Springer, Berlin–Heidelberg, 2014, pp.137-177.
DOI: 10.1007/978-3-642-31107-9_32
Google Scholar
[12]
N.D. Dien, Preparation of various morphologies of ZnO nanostructure through wet chemical methods, Adv. Mater. Sci. 4 (2019) 1-5.
DOI: 10.15761/ams.1000147
Google Scholar
[13]
Y. Ding, Z.L. Wang, T. Sun, J. Qiu, Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires, Appl. Phys. Lett. 90 (2007) 153510 (1-3).
DOI: 10.1063/1.2722671
Google Scholar
[14]
X. Chang, S. Vijay, Y. Zhao, N. J. Oliveira, K. Chan, B. Xu, Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction, Nat. Commun. 13 (2022) 2656 (1-12).
DOI: 10.1038/s41467-022-30262-2
Google Scholar
[15]
Y. Jiao, Y. Pan, M. Yang, Zh. Li, J. Yu, R. Fu, B. Man, C. Zhang, X. Zhao, Micro–nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics, Nanophotonics 13 (2024) 307-318.
DOI: 10.1515/nanoph-2023-0659
Google Scholar
[16]
X. Zhou, W. Feng, C. Wang, H. Xiaolong, X. Li, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Porous ZnO/ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing, J. Mater. Chem. A 2 (2014) 17683 (1-8).
DOI: 10.1039/c4ta04386c
Google Scholar
[17]
S.K. Guang, X. J. Xie, J. Zheng, Y.N. Wang, Y.F. Guo, C. Cheng, Y. Wu, X.Y. Zheng, C.C. Wang, Synthesis of hierarchical ZnO/C hollow spheres constructed by octahedron for water treatment, J. Mater. Sci. 55 (2020) 11938-11948.
DOI: 10.1007/s10853-020-04879-x
Google Scholar
[18]
L.A. Zadorozhnaya, A.P. Tarasov, V.M. Kanevsky, The growth mechanism, luminescence, and lasing of polyhedral ZnO microcrystals with whispering-gallery modes, Photonics 10 (2023) 1328 (1-12).
DOI: 10.3390/photonics10121328
Google Scholar
[19]
T.H.B. Ngo, Y.C. Chang, Whispering gallery modes in hybrid Au–ZnO microsphere resonators: Experimental and theoretical investigations, Opt. Mater. Express 7 (2017) 2962-2967.
DOI: 10.1364/ome.7.002962
Google Scholar
[20]
Y. Liu, C. Xu, Z. Zhu, D. You, R. Wang, F. Qin, X. Wang, Q. Cui, Z. Shi, Controllable fabrication of ZnO microspheres for whispering gallery mode microcavity, Cryst. Growth Des. 18 (2018) 5279-5286.
DOI: 10.1021/acs.cgd.8b00716
Google Scholar
[21]
V.A. Borisov, A.N. D'yachenko, R.I. Kraidenko, Reaction of zinc oxide with ammonium chloride, Russian J. Inorg. Chem. 57 (2012) 499-501.
DOI: 10.1134/s0036023612040043
Google Scholar
[22]
S.-H. Na, Ch-H. Park, First-principles study of the surface of wurtzite ZnO and ZnS – Implications for nanostructure formation, J. Korean Phys. Soc. 54 (2009) 867-872.
DOI: 10.3938/jkps.54.867
Google Scholar
[23]
H.F. Wilson, Ch. Tang, A.S. Barnard, Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies, Phys. Chem. C. 120 (2016) 9498-9505.
DOI: 10.1021/acs.jpcc.6b01479
Google Scholar
[24]
V. Jabbari, T. Foroozan, R. Shahbazian–Yassar, Dendritic Zn deposition in zinc-metal batteries and mitigation strategies, Adv. Energy Sustainability Res. 2 (2021) 2000082 (1-15).
DOI: 10.1002/aesr.202000082
Google Scholar
[25]
P.X. Gao, Ch.Sh. Lao, Y. Ding, Z.L. Wang, Metal/semiconductor core/shell nanodisks and nanotubes, Adv. Funct. Mater. 16 (2006) 53-62.
DOI: 10.1002/adfm.200500301
Google Scholar
[26]
Ch.F. Guo, Y. Wang, P. Jiang, S. Cao, J. Miao, Zh. Zhang, Q. Liu, Zinc oxide nanostructures: Epitaxially growing from hexagonal zinc nanostructures, Nanotechnology 19 (2008) 445710 (1-8).
DOI: 10.1088/0957-4484/19/44/445710
Google Scholar
[27]
L. Ren, Zh. Hub, Ch. Peng, L. Zhang, N. Wang, F. Wang, Y. Xi, S. Zhang, E. Hu, J. Luo, Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries, Proc. Natl. Acad. Sci. USA 121 (2024) e2309981121 (1-9).
DOI: 10.1073/pnas.2309981121
Google Scholar
[28]
T. Shen, T. Wei, Sh. Zhang, H. Liu, Ch. Li, Zh. Li, M. Yang, Ch. Liu, Y. P. Single, Crystalline Zn(002) facet enables ultrastable anode–electrolyte interface, Small Str. 6 (2025) 2400325 (1-7).
DOI: 10.1002/sstr.202400325
Google Scholar
[29]
L. Kabalan, I. Kowalec, C. Richard, A. Catlow, A.J. Logsdail, A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces, Phys. Chem. Chem. Phys. 23 (2021) 14649 (1-13).
DOI: 10.1039/d1cp01602d
Google Scholar
[30]
H.A. Wriedt, The O–Zn (oxygen–zinc) system, J. Phase Equilibrium 8 (1987) 166-167.
Google Scholar
[31]
C.B. Alcock, Vapor pressure of the metallic elements, in: CRC Handbook of Chemistry and Physics, 83rd ed., CRC Press, Boca Raton, 2002–2003, p.4.134-4.136.
Google Scholar
[32]
C.L. Yaws, The Yaws Handbook of Vapor Pressure. Antoine Coefficients, 2nd ed., Gulf Professional Publ., Oxford–Waltham, 2015.
Google Scholar
[33]
L. Castaneda, Synthesis and characterization of ZnO micro- and nano-cages, Acta Materialia 57 (2009) 1385-1391.
DOI: 10.1016/j.actamat.2008.11.022
Google Scholar
[34]
P. X. Gao, Zh.L. Wang, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals, J. American Chem. Soc. 125 (2003) 11299-11305.
DOI: 10.1021/ja035569p
Google Scholar
[35]
H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias, U. Gosele, Growth mechanism and characterization of zinc oxide microcages, Solid State Commun. 130 (2004) 517-521.
DOI: 10.1016/j.ssc.2004.03.014
Google Scholar
[36]
J .Q. Hu, Q. Li, X.M. Men, C.S. Lee, S.T. Lee, Thermal reduction route to the fabrication coaxial Zn/ZnO nanocables and nanotubes, Chem. Mater. 15 (2003) 305-308.
DOI: 10.1021/cm020649y
Google Scholar
[37]
X.Y. Kong, Y. Ding, Z.L. Wang, Metal–semiconductor Zn–ZnO core–shell nanobelts and nanotubes, J. Phys. Chem. B 108 (2004) 570-574.
DOI: 10.1021/jp036993f
Google Scholar
[38]
Ch.-Y. Hsu, K.-H. Chang, J.-A. Gong, J. Tiren, Y.-Y. Liab, A. Sakoda, Kirkendall void formation and selective directional growth of urchin-like ZnO/Zn microspheres through thermal oxidation in air, RSC Adv. 5 (2015) 103884-103894.
DOI: 10.1039/c5ra19168h
Google Scholar
[39]
A.-A. El Mel, R. Nakamura, C. Bittencourt, The Kirkendall effect and nanoscience: Hollow nanospheres and nanotubes, Beilstein J. Nanotechnol. 6 (2015) 1348-1361.
DOI: 10.3762/bjnano.6.139
Google Scholar
[40]
R.D. Vais, H. Heli, The Kirkendall effect: Its efficacy in the formation of hollow nanostructures, J. Biol. Today's World. 5 (2016) 137-149.
DOI: 10.15412/j.jbtw.01050802
Google Scholar
[41]
D. Weibel, Z.R. Jovanovic, E. Galvez, A. Steinfeld, Mechanism of Zn particle oxidation by H2O and CO2 in the presence of ZnO, Chem. Mater. 26 (2014) 6486-6495.
DOI: 10.1021/cm503064f
Google Scholar