On Droplet Epitaxy of InGaP Nanostructures

Article Preview

Abstract:

Semiconductor nanostructures are referred to semiconductor heterostructures confined in one, two, or all three dimensions, which are known as quantum wells, quantum wires, and quantum dots (QDs), respectively. QDs are semiconductor nanocrystals with significant potential for high-performance photonic and electronic devices based on III–V semiconductor alloys. To fabricate these structures, several methods have been developed, including chemical synthesis of colloidal QDs, Stranski–Krastanov (S–K) growth technology, and droplet epitaxy (DE). DE is an epitaxial technique primarily employed for fabrication of nanostructures based on III–V semiconductors for quantum information technology applications. This work presents a DE technology of growth of InGaP nanocrystals on GaP surface. The technology includes the electrochemical deposition of group III metals on the III–V semiconductor surface, followed by annealing in inert gas atmosphere. The photoelectric and photonic properties of the resulting nanomaterials are analyzed. Based on the experimental results and literature data, the growth mechanism of InGaP nanocrystals on the GaP surface is described, and a phenomenological model for the formation of InGaP/GaP nanostructures is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

99-106

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Moriarty, Nanostructured materials, Rep. Prog. Phys. 64 (3) (2001) 297-381.

Google Scholar

[2] F. Grillot, J. Duan, B. Dong, H. Huang, Uncovering recent progress in nanostructured light-emitters for information and communication technologies, Light Sci. Appl. 10 (2021) 156 (1-17).

DOI: 10.1038/s41377-021-00598-3

Google Scholar

[3] R. Katsumi, Y. Ota, M. Benyoucef, Telecom-band quantum dots compatible with silicon photonics for photonic quantum applications, Adv. Quant. Technol. 8 (2025) 2300423 (1-13).

DOI: 10.1002/qute.202300423

Google Scholar

[4] Y. Arakawa, M.J. Holmes, Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview, Appl. Phys. Rev. 7 (2020) 021309 (1-16).

DOI: 10.1063/5.0010193

Google Scholar

[5] M. Gurioli, Zh. Wang, A. Rastelli, T. Kuroda, S. Sanguinetti, Droplet epitaxy of semiconductor nanostructures for quantum photonic devices, Nat. Mater. 18 (2019) 799-810.

DOI: 10.1038/s41563-019-0355-y

Google Scholar

[6] L.-Q. Yue, Y.-L. Shi, N.-F. Sun, Sh. Qiang, J.-K. Qin, L. Zhen, Ch.-Y. Xu, InP low-dimensional nanomaterials for electronic and optoelectronic device applications: A review, Adv. Sensor Res. 2 (2023) 2200101 (1-15).

DOI: 10.1002/adsr.202200101

Google Scholar

[7] O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, A.J. Nozik, Synthesis and characterization of InP quantum dots, J. Phys. Chem. C 98 (19) (1994) 4966-4969.

DOI: 10.1021/j100070a004

Google Scholar

[8] P. Mushonga, M.O. Onani, A.M. Madiehe, M. Meyer, Indium phosphide-based semiconductor nanocrystals and their applications, J. Nanomater. 2012 (2012) 869284 (1-11).

DOI: 10.1155/2012/869284

Google Scholar

[9] M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots, Appl. Phys. Lett. 103 (16) (2013) 162101 (1-4).

DOI: 10.1063/1.4825106

Google Scholar

[10] D. Lapherashvili, Semiconductor optical amplifier in communication, Proc. Georgian Natl. Acad. Sci. (Ser. Chem.) 42 (3) (2016) 390-394.

Google Scholar

[11] S. Tamang, Ch. Lincheneau, Y. Hermans, S. Jeong, P. Reiss, Chemistry of InP nanocrystal syntheses, Chem. Mater. 28 (8) (2016) 2491-2506.

DOI: 10.1021/acs.chemmater.5b05044

Google Scholar

[12] F. Zafar, A. Iqbal, Indium phosphide nanowires and their applications in optoelectronic devices, Proc. Royal Soc. A 472 (2016) 20150804 (1-18).

DOI: 10.1098/rspa.2015.0804

Google Scholar

[13] H. Zhang, N. Hu, Z. Zeng, Q. Lin, Zh. Fengjuan, A. Tang, Y. Jia, L.S. Li, H. Shen, F. Teng, Z. Du, High-efficiency green InP quantum dot‐based electroluminescent device comprising thick-shell quantum dots, Adv. Opt. Mater. 7 (7) (2019) 1801602 (1-9).

DOI: 10.1002/adom.201801602

Google Scholar

[14] J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y.R. Do, H. Yang, InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices, ACS Appl. Nano Mater. 3 (2) (2020) 1972-1980.

DOI: 10.1021/acsanm.0c00008

Google Scholar

[15] F. Pelayo Garcia de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer, E.H. Sargent, Semiconductor quantum dots: Technological progress and future challenges, Science 373 (6555) (2021) eaaz8541 (1-14).

DOI: 10.1126/science.aaz8541

Google Scholar

[16] D.A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel, Quantum communication using semiconductor quantum dots, Adv. Quant. Technol. 5 (2022) 2100116 (1-40).

DOI: 10.1002/qute.202100116

Google Scholar

[17] E.M. Sala, M. Godsland, Y.I. Na, A. Trapalis, J. Heffernan, Droplet epitaxy of InAs/InP quantum dots via MOVPE by using an InGaAs interlayer, Nanotechnology 33 (2022) 065601 (1-8).

DOI: 10.1088/1361-6528/ac3617

Google Scholar

[18] S. Saurabh, M. Khalid Hossain, S. Singh, S. Kumar Agnihotria, D.P. Samajdar, Optical performance analysis of InP nanostructures for photovoltaic applications, RSC Adv. 13 (2023) 9878-9891.

DOI: 10.1039/d3ra00039g

Google Scholar

[19] N. Koguchi, S. Takahashi, T. Chikyow, New MBE growth method for InSb quantum well boxes, J. Cryst. Growth 111 (1991) 688-692.

DOI: 10.1016/0022-0248(91)91064-h

Google Scholar

[20] N. Koguchi, Self-assembly of semiconductor quantum dots by droplet epitaxy, MRS Symp. Proc. 959 (2006) 1801 (1-10).

DOI: 10.1557/proc-0959-m18-01

Google Scholar

[21] S. Sanguinetti, S. Bietti, N. Koguchi, Droplet epitaxy of nanostructures, in: M. Henini (Ed.), Molecular Beam Epitaxy, second ed., Elsevier, Amsterdam, 2018, Ch. 13, pp.293-314.

DOI: 10.1016/b978-0-12-812136-8.00013-x

Google Scholar

[22] A. Nemcsics, Quantum dots prepared by droplet epitaxial method, nanotechnology and nanomaterials, in: V.N. Stavrou (ed.), Quantum Dots – Theory and Applications, IntechOpen, 2015, Ch. 5, pp.119-149.

DOI: 10.5772/60823

Google Scholar

[23] R.S.R. Gajjela, P.M. Koenraad, Atomic-scale characterization of droplet epitaxy quantum dots, Nanomaterials 11 (2021) 85 (1-24).

DOI: 10.3390/nano11010085

Google Scholar

[24] S.F. Covre da Silva, G. Undeutsch, B. Lehner, S. Manna, T.M. Krieger, M. Reindl, C. Schimpf, R. Trotta, A. Rastelli, GaAs quantum dots grown by droplet etching epitaxy as quantum light sources, Appl. Phys. Lett. 119 (2021) 120502 (1-9).

DOI: 10.1063/5.0057070

Google Scholar

[25] E.M. Sala, Y.I. Na, J. Heffernan, Local droplet etching with indium droplets on InP(100) by metal–organic vapor phase epitaxy, Cryst. Growth Design 24 (22) (2024) 9571-9580.

DOI: 10.1021/acs.cgd.4c01097

Google Scholar

[26] E. Steimetz, F. Schienle, J.-T. Zettler, W. Richter, Stranski–Krastanov formation of InAs quantum dots monitored during growth by reflectance anisotropy spectroscopy and spectroscopic ellipsometry, J. Cryst. Growth 170 (1–4) (1997) 208-214.

DOI: 10.1016/s0022-0248(96)00630-6

Google Scholar

[27] J.E. Prieto, I. Markov, Stranski–Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation, Surf. Sci. 664 (2017) 172-184.

DOI: 10.1016/j.susc.2017.05.018

Google Scholar

[28] Yu. Berdnikov, P. Holewa, Sh. Kadkhodazadeh, J.M. Smigiel, A. Sakanas, A. Frackowiak, K. Yvind, M. Syperek, E. Semenova, Near-critical Stranski–Krastanov growth of InAs/InP quantum dots, Sci. Rep. 14 (2024) 23697 (1-9).

DOI: 10.1038/s41598-024-70451-1

Google Scholar

[29] T. Laperashvili, Method of Fabrication of Schottky Barrier, Patent of Georgia # 46 (1992).

Google Scholar

[30] O. Kvitsiani, D. Laperashvil, T. Laperashvili, V. Mikelashvili, Solar cells based on InP/GaP/Si structure, Proc. SPIE 10019 (2016) 100191G (1-7).

DOI: 10.1117/12.2248086

Google Scholar

[31] F. Hatami, Indium Phosphide Quantum Dots in GaP and in In0.48Ga0.52P. Growth and Properties (Dissertation), Humboldt–Universitatz, Berlin, 2002.

Google Scholar