Silicon from Shoda-Kedela (Georgia) Quartz Deposition

Article Preview

Abstract:

Paper investigates the possibility of producing silicon from silica contained in Shoda-Kedela (Oni-Gebi district, Georgia) quartz deposition. Characterization of silica from Shoda-Kedela quartz rock is carried by its crushing, grinding, thermal analysis, studying composition and density. Metallurgical grade silicon (MG-Si) is obtained by reducing Shoda-Kedela quartz in its reaction with coke in an electric arc furnace at temperature of ~1800°C. The obtained in this way material reveals that Shoda-Kedela silica containing of 99.58% SiO2 would be useful for developing the silicon high-technology production.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

113-118

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Gotze, Chemistry, textures and physical properties of quartz – Geological interpretation and technical application, Mineralog. Mag. 73 (4) (2009) 645-671.

DOI: 10.1180/minmag.2009.073.4.645

Google Scholar

[2] X. Pan, S. Li, Y. Li, P. Guo, X. Zhao, Y. Cai, Resource, characteristic, purification and application of quartz: A review, Miner. Eng. 183 (2022) 107600 (1-5).

DOI: 10.1016/j.mineng.2022.107600

Google Scholar

[3] H. Long, D. Zhu, J. Pan, S. Li, C. Yang, Z. Guo, Advanced processing techniques and impurity management for high-purity quartz in diverse industrial applications, Minerals 14 (6) (2024) 571 (1-28).

DOI: 10.3390/min14060571

Google Scholar

[4] I. Pulariani, G. Darsavelidze, M. Kereselidze, R. Razmadze, E. Khutsishvili, Investigation of technological process of magnesium silicide producing by magnesium thermal restoration of low-grade quartzite, in: New Developments in Materials Science, Nova Sci. Publ., New York, Ch. 13 (2010) 113-117.

Google Scholar

[5] A.D. Kiselev, R.I. Kraidenko, L.N. Malyutin, V.A. Borisov, The production of silicon by magnesiothermic reduction of silicon dioxide, AIP Conf. Proc. 2301 (2020) 040003 (1-5).

DOI: 10.1063/5.0033077

Google Scholar

[6] D. Darwis, E. Sesa, Iqbal, S. Kasim, Diharnaini, A.S. Lestari, M. Lamanu, Characteristic study of SiO2 content of quartz rock as a raw material for making silicon metal for solar cells, J. Phys. Conf. Ser., 1434 (2020) 012021 (1-4).

DOI: 10.1088/1742-6596/1434/1/012021

Google Scholar

[7] J. Wang, Global high purity quartz deposits: Resources distribution and exploitation status, Acta Petrol. Mineral. 1 (2021) 131-141.

Google Scholar

[8] Y. Li, X. Pan, S. Li, X. Zhao, P. Guo, T. He, Innovative technology for preparation of high-purity silica from vein quartz ore through S-HGMS coupling acid leaching process, Proc. Safety Environ. Protec. 177 (2023) 1103-1115.

DOI: 10.1016/j.psep.2023.07.067

Google Scholar

[9] R. Zhang, Ch. Tang, W. Ni, J. Yuan, Y. Zhou, X. Liu, Research status and challenges of high-purity quartz processing technology from a mineralogical perspective in China, Minerals 13 (12) (2023) 1505 (1-20).

DOI: 10.3390/min13121505

Google Scholar

[10] J.P. Schelz, The detection of quartz in clay minerals by differential thermal analysis, Thermochim. Acta 15 (1/2) (1976) 17-28.

DOI: 10.1016/0040-6031(76)80088-3

Google Scholar

[11] D. Tsurumi, K. Hamada, Dopant mapping of semiconductors with scanning electron microscopy, Sci. Tech. Rev. 77 (2013) 141-146.

Google Scholar

[12] S.E. Johnson, W.J. Song, A.C. Cook, S.S. Vel, C.C. Gerbi, The quartz α↔β phase transition: Does it drive damage and reaction in continental crust? Earth Planet. Sci. Lett. 553 (2021) 116622 (1-12).

DOI: 10.1016/j.epsl.2020.116622

Google Scholar

[13] E. Khutsishvili, T. Qamushadze, G. Goderdzishvili, Silicon from Rocks to Electronics, Favorite Style, Tbilisi (2023).

Google Scholar