Electronic Structure of Gallium Nitride during Sodium Adsorption

Article Preview

Abstract:

The electronic structure of ultrathin Na/GaN interfaces was studied using photoelectron spectroscopy with synchrotron radiation in the photon energy range of 75–770 eV. The experiments were carried out in situ in ultrahigh vacuum of 5·10–10 Torr with submonolayer sodium coverages on the gallium nitride surface. The photoemission spectra of the Ga 3d and N 1s core levels were studied at different excitation energies. It was found that Na adsorption causes a decrease in the intensity and a shift in the spectra of the Ga 3d and N 1s core levels towards higher binding energies. It was found that the sodium adsorption leads to some changes in the spectra due to charge transfer between the Na adlayer and the surface Ga or N atoms.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

93-98

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Haziq, S. Falina, A. Abd Manaf, H. Kawarada, M. Syamsul, Challenges and opportunities for high-power and high-frequency AlGaN/GaN high-electron-mobility transistor (HEMT) applications: A review, Micromachines 13 (12) (2022) 2133 (1-36).

DOI: 10.3390/mi13122133

Google Scholar

[2] J. Xu, L. Gu, Zh. Ye, S. Kargarrazi, J.M. Rivas–Davila, Cascode GaN/SiC: A wide-bandgap heterogeneous power device for high-frequency applications, IEEE Trans. Power Electr. 35 (6) (2020) 6340-6349.

DOI: 10.1109/tpel.2019.2954322

Google Scholar

[3] Ch.-Ch. Lin, Y.-R. Wu, H.-Ch. Kuo, M.S. Wong, S.P. Den Baars, Sh. Nakamura, A. Pandey, Z. Mi, P. Tian, K. Ohkawa, D. Iida, T. Wang, Y. Cai, J. Bai, Zh. Yang, Y. Qian, Sh.-Ts. Wu, J. Han, Ch. Chen, Zh. Liu, B.-R. Hyun, J.-H. Kim, B. Jang, H.-D. Kim, H.-J. Lee, Y.-Ts. Liu, Y.-H. Lai, Y.-L. Li, W. Meng, H. Shen, B. Liu, X. Wang, K.-L. Liang, Ch.-J. Luo, Y.-H. Fang, The micro-LED roadmap: Status quo and prospects, J. Phys. Photonics 5 (2023) 042502 (1-55).

DOI: 10.1088/2515-7647/acf972

Google Scholar

[4] W.-H. Wu, Y.-Ch. Lin, P.-Ch. Chin, Ch.-Ch. Hsu, J.-H. Lee, Sh.-Ch. Liu, J.-Sh. Maa, H. Iwai, E.Y. Chang, H.-T. Hsu, Reliability improvement in GaN HEMT power device using a field plate approach, Solid-State Electr. 133 (2017) 64-69.

DOI: 10.1016/j.sse.2017.05.001

Google Scholar

[5] F. Medjdoub, K. Iniewski, Gallium nitride (GaN), Informa UK Ltd, London, 2017.

Google Scholar

[6] M. Grodzicki, Properties of bare and thin-film-covered GaN(0001) surfaces, Coatings 11 (2) (2021) 145 (1-33).

DOI: 10.3390/coatings11020145

Google Scholar

[7] J.T. Asubar, Z. Yatabe, D. Gregusova, T. Hashizume, Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation, J. Appl. Phys. 129 (2021) 121102 (1-28).

DOI: 10.1063/5.0039564

Google Scholar

[8] E.L. Luna, M.A. Vidal, Review of the properties of GaN, InN, and their alloys obtained in cubic phase on MgO substrates by plasma-enhanced molecular beam epitaxy, Crystals 14 (9) (2024) 801 (1-35).

DOI: 10.3390/cryst14090801

Google Scholar

[9] V.M. Bermudez, The fundamental surface science of wurtzite gallium nitride, Surf. Sci. Rep. 72 (4) (2017) 147-315.

DOI: 10.1016/j.surfrep.2017.05.001

Google Scholar

[10] G.V. Benemanskaya, S.A. Kukushkin, P.A. Dementev, M.N. Lapushkin, S.N. Timoshnev, D.V. Smirnov, Synchrotron-based photoemission study of electronic structure of the Cs/GaN ultrathin interface, Solid State Commun. 271 (2018) 6-10.

DOI: 10.1016/j.ssc.2017.12.004

Google Scholar

[11] K.H. Yeoh, T.L. Yoon, T.L. Lim, Rusi, D.Sh. Ong, Monolayer GaN functionalized with alkali metal and alkaline earth metal atoms: A first-principles study, Superlatt. Microstruct. 130 (2019) 428-436.

DOI: 10.1016/j.spmi.2019.05.011

Google Scholar

[12] S.N. Timoshnev, A.M. Mizerov, G.V. Benemanskaya, S.A. Kukushkin, A.D. Buravlev. Photoemission studies of the electronic structure of GaN grown by plasma assisted molecular beam epitaxy, Phys. Solid State 61 (12) (2019) 2282-2285.

DOI: 10.1134/s1063783419120564

Google Scholar

[13] S. Timoshnev, G. Benemanskaya, G. Iluridze, T. Minashvili, Photoelectron spectroscopy of electronic surface structure of the Cs/GaN and Cs/InN interfaces, Surf. Interface Anal. 52 (30) (2020) 620-625.

DOI: 10.1002/sia.6801

Google Scholar

[14] L. Liu, J. Tian, F. Lu, Structural and electronic properties of Cs-adsorbed GaN monolayer and bilayer based on first principles, Int. J. Energy Res. 45 (5696) (2021) 9340-9350.

DOI: 10.1002/er.6464

Google Scholar

[15] S.N. Timoshnev, G.V. Benemanskaya, A.M. Mizerov, M.S. Sobolev, Ya.B. Enns, Changes in the electronic properties of the GaN/Si(111) surface under Li adsorption, Semiconductors 57 (11) (2023) 508-512.

DOI: 10.1134/s106378262308016x

Google Scholar

[16] P.V. Seredin, D.L. Goloshchapov, D.E. Kostomakha, Y.A. Peshkov, N.S. Buylov, S.A. Ivkov, A.M. Mizerov, S.N. Timoshnev, M.S. Sobolev, E.V. Ubyivovk, V.I. Zemlyakov, Comparative studies of GaN, n-GaN and n+-GaN contact layers on GaN/c-Al2O3 virtual substrates synthesized by PA MBE, Opt. Mater. 152 (2024) 115471 (1-10).

DOI: 10.1016/j.optmat.2024.115471

Google Scholar

[17] L. Plucinski, L. Colakerol, S. Bernardis, Y. Zhang, Sh. Wang, C. O'Donnell, K.E. Smith, I. Friel, T.D. Moustakas, Photoemission study of sulfur and oxygen adsorption on GaN (000–1), Surf. Sci. 600 (1) (2006) 116-123.

DOI: 10.1016/j.susc.2005.10.021

Google Scholar