Comparative Characterization of Graphene Oxides Obtained from Graphite Foil Wastes and Flake Graphite

Article Preview

Abstract:

Graphene oxide (GO) and reduced graphene oxide (rGO) were obtained from graphite foil wastes (GFWs) by oxidation with KMnO4 in the presence of concentrated sulfuric acid at 25–50°C. The resulting GOs were compared with that obtained from flake graphite under the same conditions. The samples were investigated by UV–Vis, FTIR, and Raman spectroscopy methods. Spectroscopic data, as well as EDS and XRD analyses, have shown that the GO samples obtained in both cases are almost identical. The hydrodynamic diameter and ζ-potential of both sample suspensions were also determined. The average particles size of GO(graflex) is 321.5 nm, while the particles size of GO(graphite) reaches 252 nm. The measured ζ-potential values for GO(graflex) and GO(graphite) are –31.58 and –50.04 mV, respectively. Therefore, GFWs can serve as precursor for the production of GOs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1166)

Pages:

83-90

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater. 6 (3) (2007) 183-191.

Google Scholar

[2] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Zh. Sun, A. Slesarev, L.B. Alemany, W.Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (8) (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[3] L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite, Mater. Lett. 109 (2013) 207-210.

DOI: 10.1016/j.matlet.2013.07.072

Google Scholar

[4] X.Hu, Y.Yu, J.Zhou, L. Song, Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide, Nano Brief Rep. Rev. 9(3) (2014) 1450037 1-8.

DOI: 10.1142/s1793292014500374

Google Scholar

[5] M.P. Lavin–Lopez, M. Valverde Palomino, L. Sanchez–Silva, A. Romero Izquierdo, Optimization of the synthesis procedures of graphene and graphite oxide, in: P.K. Nayak (Ed.), Recent Advances in Graphene Research, InTech, 2016, Ch. 5, http://dx.doi.org/10.5772/63752, pp.122-133.

DOI: 10.5772/63752

Google Scholar

[6] A.M. Dimiev, S. Eigler (Eds.), Graphene Oxide: Fundamentals and Applications, Wiley, Chichester, 2016.

Google Scholar

[7] X. Hu, Y. Yu, J. Zhou, L. Song, Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide, Nano 9 (3) (2014) 1450037 (1-8).

DOI: 10.1142/s1793292014500374

Google Scholar

[8] A. Ambrosi, Ch.K. Chua, B. Khezri, Z. Sofer, R.D. Webster, M. Pumera, Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite, Proc. Natl. Acad. Sci. USA 109 (32) (2012) 12899-12904.

DOI: 10.1073/pnas.1205388109

Google Scholar

[9] H. Yang, H. Li, J. Zhai, L. Sun, H. Yu, Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite, Ind. Eng. Chem. Res. 53 (46) (2014) 17878-17883.

DOI: 10.1021/ie503586v

Google Scholar

[10] A. Abbas, L.T. Mariana, A.N. Phan, Biomass-waste derived graphene quantum dots and their applications, Carbon 140 (2018) 77-99.

DOI: 10.1016/j.carbon.2018.08.016

Google Scholar

[11] G. Supriyanto, N.Kh. Rukman, A.K. Nisa, M. Jannatin, B. Piere, A. Abdullah, M.Z Fahmi, H.S. Kusuma, Graphene oxide from Indonesian biomass: Synthesis and characterization, BioResources 13 (3) (2018) 4832-4840.

DOI: 10.15376/biores.13.3.4832-4840

Google Scholar

[12] S. Pei, Q. Wei1, K. Huang, H.-M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation, Nat. Commun. 9 (2018) 145 (1-9).

DOI: 10.1038/s41467-017-02479-z

Google Scholar

[13] J. Liu, H. Yang, S.G. Zhen, Ch.K. Poh, A. Chaurasia, J. Luo, X. Wu, E.K.L. Yeow, N.G. Sahoo, J. Lin, Z. Shen, A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core, RSC Adv. 3 (29) (2013) 11745-11750.

DOI: 10.1039/c3ra41366g

Google Scholar

[14] J. Chen, M. Perez–Page, Zh. Ji, Zh. Zhang, Z. Guo, S. Holmes, One step electrochemical exfoliation of natural graphite flakes into graphene oxide for polybenzimidazole composite membranes giving enhanced performance in high temperature fuel cells, J. Power Sources 491 (2021) 229550 (1-15).

DOI: 10.1016/j.jpowsour.2021.229550

Google Scholar

[15] L. Wu, W. Li, P. Li, Sh. Liao, Sh. Qiu, M. Chen, Y. Guo, Q. Li, Ch. Zhu, L. Liu, Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite, Small 10 (7) (2014) 1421-1429.

DOI: 10.1002/smll.201302730

Google Scholar

[16] G.B. Tuzemen, Production of graphene by electrochemical exfoliation method and energy applications, in: Proc. Int. Conf. Eng. Nat. Sci. Technol. Develop., Bayburt Univ., Erdek, 2024, pp.771-776.

Google Scholar

[17] Q. Wei, S. Pei, G. Wen, K. Huang, Zh. Wu, Zh. Liu, W. Ma, H.-M. Cheng, W. Ren, Glassy carbon high yield controlled synthesis of nano-graphene oxide by water electrolytic oxidation of glassy carbon for metal-free catalysis, ACS Nano 13 (2019) 9482-9490.

DOI: 10.1021/acsnano.9b04447

Google Scholar

[18] H. Sun, G. Xu, W. Lian, G. Kastiukas, J. Zhang, X. Zhang, W. Liu, F. Xing, J. Ren, Electrochemical synthesis and property characterisation of graphene oxide using water as electrolyte, Chem. Phys. Lett. 786 (10) (2022) 139206 (1-10).

DOI: 10.1016/j.cplett.2021.139206

Google Scholar

[19] Graphite foils applications: https://www.mersen.com/en, https://www.toyotanso.com/index.html, https://www.canadacarbon.com/, and https://sealwiz.com/.

DOI: 10.1089/glre.2016.201011

Google Scholar

[20] N.G. Barbakadze, V.G. Tsitsishvili, T.V. Korkia, Z.G. Amiridze, N.V. Jalabadze, R.V. Chedia, Synthesis of graphene oxide and reduced graphene oxide from industrial graphite foil wastes, European Chem. Bull. 7 (11) (2018) 329-333.

DOI: 10.17628/ecb.2018.7.329-333

Google Scholar

[21] L. Nadaraia, T. Dundua, N. Gamkrelidze, V. Tsitsishvili, N. Barbakadze, R. Chedia, Graphite foil waste to graphene: New carbon precursors for synthesis of graphene and its oxides, Key Eng. Mater. 891 (2021) 68-74.

DOI: 10.4028/www.scientific.net/kem.891.68

Google Scholar

[22] T. Dundua, V. Ugrekhelidze, L. Nadaraia, N. Nonikashvili, V. Gabunia, M. Japaridze, N. Barbakadze, R. Chedia, Oxidation and exfoliation of powdered graphite foil and its wastes: Preparation of graphene and its oxides, in: O. Mukbaniani, T. Tatrishvili, M.J.M. Abadie (Eds.), Advanced Materials, Polymers, and Composites, Apple Acad. Press, Burlington, 2021, Ch. 6, pp.93-110.

DOI: 10.1201/9781003105015-7

Google Scholar

[23] T. Dundua, Preparation of graphene oxide composites containing nanometals and oxides from graphite foil wastes and study of their biocidal activity, Nano Studies 21/22 (2021–2022) 101-120.

DOI: 10.52340/ns.2022.06

Google Scholar

[24] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. American Chem. Soc. 80 (6) (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[25] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, Sh. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. 46 (7) (2010) 1112-1114.

DOI: 10.1039/b917705a

Google Scholar

[26] T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egyptian J. Basic Appl. Sci. 4 (1) (2017) 74-79.

DOI: 10.1016/j.ejbas.2016.11.002

Google Scholar

[27] C. Gomez–Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7 (11) (2007) 3499-3503.

DOI: 10.1021/nl072090c

Google Scholar

[28] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (4) (2013) 235-246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[29] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105.

DOI: 10.1038/nnano.2007.451

Google Scholar

[30] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (1) (2010) 228-240.

DOI: 10.1039/b917103g

Google Scholar