[1]
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering. 143 (2018) 172–196.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[2]
C.Y. Yap, C.K. Chua, Z. Dong, Z.H. Liu, D.Q. Zhang, L E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews. 2 (2015) 041101.
DOI: 10.1063/1.4935926
Google Scholar
[3]
S. Cooke, K. Ahmadi, S. Willerth, R. Herring, Metal additive manufacturing: Technology, metallurgy and modelling, Journal of Manufacturing Processes. 57 (2020) 978–1003.
DOI: 10.1016/j.jmapro.2020.07.025
Google Scholar
[4]
S. Greco, K. Gutzeit, H. Hotz, B. Kirsch, J.C. Aurich, Selective laser melting (SLM) of AISI 316L–impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density, International Journal of Advanced Manufacturing Technology. 108 (2020) 1551–1562.
DOI: 10.1007/s00170-020-05510-8
Google Scholar
[5]
H. Li, M. Ramezani, Z. Chen, S. Singamneni, Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V, Transactions of the Indian Institute of Metals. 72 (2019) 3201–3214.
DOI: 10.1007/s12666-019-01785-y
Google Scholar
[6]
B. Zhang, Y. Li, Q. Bai, Defect formation mechanisms in selective laser melting: A review, Chinese Journal of Mechanical Engineering. 30 (2017) 515–527.
DOI: 10.1007/s10033-017-0121-5
Google Scholar
[7]
H. Jia, S. Hua, H. Wang, Y. Wu, H. Wang, Scanning strategy in selective laser melting (SLM): A review, International Journal of Advanced Manufacturing Technology. 113 (2021) 1–29.
DOI: 10.1007/s00170-021-06810-3
Google Scholar
[8]
K. He, X. Zhao, 3D thermal finite element analysis of the SLM 316L parts with microstructural correlations, Complexity. 2018 (2018) 1–13.
DOI: 10.1155/2018/6910187
Google Scholar
[9]
X. Miao, G. Yin, J. Liu, X. Hou, Q. Zhang, J. Li, B. Shi, X. Wang, S. Song, Influence of scanning strategy on the performances of GO-reinforced Ti6Al4V nanocomposites manufactured by SLM, Metals. 10 (2020) 1379.
DOI: 10.3390/met10101379
Google Scholar
[10]
S. Zou, Y. He, B. Zhang, F. Zhu, Y. Xu, Z. Yang, S. Shu, H. Kou, Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting, Results in Physics. 16 (2020) 103005.
DOI: 10.1016/j.rinp.2020.103005
Google Scholar
[11]
R. Thongpron, P. Ninpetch, P. Chalermkarnnon, P. Kowitwarangkul, Effect of hatch spacing in selective laser melting process of Ti-6Al-4V alloy on finished surface roughness: A computational study, Journal of Metals, Materials and Minerals. 34 (2024) 1861.
DOI: 10.55713/jmmm.v34i3.1861
Google Scholar
[12]
P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti–6Al–4V, Materials Science and Engineering: A. 598 (2014) 327–337.
DOI: 10.1016/j.msea.2014.01.041
Google Scholar
[13]
N. Sanaei, A. Fatemi, Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals, Theoretical and Applied Fracture Mechanics. 108 (2020) 102638.
DOI: 10.1016/j.tafmec.2020.102638
Google Scholar
[14]
J.J. Babu, B.E. Carroll, S.G. Clamara, C.H. Wong, D.L. Bourell, C.B. Williams, An experimental study of downfacing surfaces in selective laser melting, Advanced Engineering Materials. 24 (2022) 2101562.
Google Scholar
[15]
B.M. Marques, C.M. Andrade, D.M. Neto, M.C. Oliveira, J.L. Alves, L.F. Menezes, Numerical analysis of residual stresses in parts produced by selective laser melting process, Procedia Manufacturing. 47 (2020) 1170–1177.
DOI: 10.1016/j.promfg.2020.04.167
Google Scholar
[16]
L. Cao, Numerical simulation of the impact of laying powder on selective laser melting single-pass formation, International Journal of Heat and Mass Transfer. 141 (2019) 1036–1048.
DOI: 10.1016/j.ijheatmasstransfer.2019.07.053
Google Scholar
[17]
P. Bian, J. Shi, Y. Liu, Y. Xie, Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel, Optics & Laser Technology. 132 (2020) 106477.
DOI: 10.1016/j.optlastec.2020.106477
Google Scholar
[18]
P. Promoppatum, S.-C. Yao, Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing: Numerical and experimental studies, Journal of Manufacturing Processes. 49 (2020) 247–259.
DOI: 10.1016/j.jmapro.2019.11.020
Google Scholar
[19]
X. Zhang, J. Kang, Y.K. Rong, P. Wu, T. Feng, Effect of scanning routes on the stress and deformation of overhang structures fabricated by SLM, Materials. 12 (2018) 37.
DOI: 10.3390/ma12010047
Google Scholar
[20]
C. Veiga, J.P. Davim, A. Loureiro, Properties and applications of titanium alloys: A brief review, Reviews on Advanced Materials Science. 32 (2012) 133–148.
Google Scholar
[21]
C. García-Hernández, J. Torres-González, P. Bartolo-Páez, L. Pérez-González, J. Ávila, S. Anaya, Effect of processing on microstructure, mechanical properties, corrosion and biocompatibility of additive manufacturing Ti-6Al-4V orthopaedic implants, Scientific Reports. 15 (2025) 14087.
DOI: 10.1038/s41598-025-98349-6
Google Scholar
[22]
D.-P. Kouprianoff, M.D. Bal, S. Aminzadeh, G. Kok, M. van den Bosch, A. Simar, Monitoring of laser powder bed fusion by acoustic emission: Investigation of single tracks and layers, Frontiers in Mechanical Engineering. 7 (2021) 678076.
DOI: 10.3389/fmech.2021.678076
Google Scholar
[23]
C.H. Fu,Y.B. Guo, Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V, Journal of Manufacturing Science and Engineering. 136 (2014) 061004.
DOI: 10.1115/1.4028539
Google Scholar
[24]
J. Mesicek, Q.-P. Ma, J. Hajnys, J. Zelinka, M. Pagac, J. Petru, O. Mizera, Abrasive surface finishing on SLM 316L parts fabricated with recycled powder, Applied Sciences. 11 (2021) 2869.
DOI: 10.3390/app11062869
Google Scholar
[25]
D. Aqilah, M. Sayuti, F. Yusof, Y. Dambatta, N. A. Mohd Amran, W. Izzati, Effects of process parameters on the surface roughness of stainless steel 316L parts produced by selective laser melting, Journal of Testing and Evaluation. 46 (2018) 20170140.
DOI: 10.1520/jte20170140
Google Scholar
[26]
M. Król, T. Tomasz, Surface quality research for selective laser melting of Ti-6Al-4V alloy, Archives of Metallurgy and Materials. 61 (2016) 945–950.
DOI: 10.1515/amm-2016-0213
Google Scholar