The Effect of Sugarcane Bagasse Cellulose-Acrylamide Ratio on Swelling Degree Properties of Sugarcane Bagasse Cellulose-Polyacrylamide-Based Bead Gel

Article Preview

Abstract:

This research prepared a bead gel based on acrylamide grafted sugarcane bagasse cellulose and carrageenan mixture. The effect of the weight ratio of sugarcane bagasse cellulose-acrylamide (SCB-AA) on bead gel swelling degree was studied. Acrylamide-grafted cellulose was prepared by microwave-assisted polymerization with potassium peroxydisulfate (KPS) as an initiator. Successful grafting of acrylamide onto the cellulose backbone of bagasse was confirmed through FTIR analysis. A suitable absorption kinetics model based on the result of swelling was also studied. The highest swelling degree was obtained at an SCB-AA ratio of 1:10 (w/w) in a water medium of 621.17% and a 0.1 M NaCl solution of 652.38%. Based on swelling tests carried out on water media and NaCl solution, the highest degree of swelling was obtained in water with a ratio of 1:5 (w/w), reaching 405.61%, 1:10 (w/w), reaching 621.17%, and 1:15 (w/w), reaching 558.63%. Meanwhile, in the NaCl solution at a ratio of 1:5 (w/w), the concentration reaches 308.22%. At a ratio of 1:10 (w/w), the concentration reaches 652.38%, and at a ratio of 1:15 (w/w), it reaches 453.41%. The second-order kinetic model accurately describes the swelling behavior of SCB-AA hydrogel synthesized using microwave irradiation, as tested in both water and NaCl media.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1173)

Pages:

47-57

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Peppas, A. S. Hoffman, Hydrogels, Biomaterial science (Elsevier, 2020).

Google Scholar

[2] K. M. Raju, M. p. Raju, Y. M. Mohan, Synthesis of superabsorbent copolymers as water manageable materials, Polym. Inter. 52 (2003) 768-772.

DOI: 10.1002/pi.1145

Google Scholar

[3] S. Bashir, M. Hina, J. Iqbal, A. H. Rajpar, M. A. Mujtaba, N. A. Alghamdi, S. Wageh, K. Ramesh and S. Ramesh, Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polym. 12 (2020) 1-60.

DOI: 10.3390/polym12112702

Google Scholar

[4] H. A. Abd El-Rehim, EL-Syaed. A. Hegazy, H. L Abd El-Mohdy, Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. Appl. Polym. Sci. 93 (2004) 1360-1371.

DOI: 10.1002/app.20571

Google Scholar

[5] H. Kaşgöz, A. Durmuş, A. Kaşgöz, Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym. for Adv. Tech. 19, 3 (2008) 213-220.

DOI: 10.1002/pat.999

Google Scholar

[6] Q. Liu, A. M. Rauth, X. Y. Wu, Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification–internal gelation–adsorption–polyelectrolyte coating method. Pharm. 339 (2007) 148-156.

DOI: 10.1016/j.ijpharm.2007.02.027

Google Scholar

[7] S. G. Abd Alla, M. Sen, A. W. M. El-Naggar, Swelling and mechanical properties of superabsorbent hydrogels based on tara gum/acrylic acid synthesized by gamma radiation. Carb. Polym. 89 (2012) 478-485.

DOI: 10.1016/j.carbpol.2012.03.031

Google Scholar

[8] M. Liu, R. Liang, F. Zhan, Z. Liu, A. Niu, Synthesis of a Slow-release and Superabsorbent Nitrogen Fertilizer and its Properties. Polym. for Adv. Techn. 17 (2006) 430-438.

DOI: 10.1002/pat.720

Google Scholar

[9] P. S. nee' Nigam, A. Pandey. (eds) Biotechnology for agro-industrial residues utilisation, (Springer, Dordrecht, 2009) 239-252.

DOI: 10.1007/978-1-4020-9942-7

Google Scholar

[10] A. R. Gonçalves, P. Benar, S. M. Costa, D. S. Ruzene, R. Y. Moriya, S. M. Luz, L. P. Ferretti, Integrated processes for use of pulps and lignins obtained from sugarcane bagasse and straw. Appl Biochem. Biotechnol. 123 (2005) 821–826.

DOI: 10.1007/978-1-59259-991-2_69

Google Scholar

[11] G. Sennakesavan, M. Mostakhdemin, L.K. Dkhar, A. Seyfoddin, S.J. Fatihhi,Acrylic acid/acrylamide based hydrogels and its properties - a review. Polym. Degrad. Stab. 180 (2020) 1-11.

DOI: 10.1016/j.polymdegradstab.2020.109308

Google Scholar

[12] A. M. Elbarbary, H. A. A. El-Rehim, N. M. El-Sawy, E. A. Hegazy, E. A. Soliman, Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural. Carb. Polym. 176 (2017) 19-28.

DOI: 10.1016/j.carbpol.2017.08.050

Google Scholar

[13] N. A. Yusoff, N. M. Shahib, N. A. Zainol, K. S. A. Sohaimi, N. M. Rohaizad, E. A. Wikurendra, A. Andini, A. Syafiuddin, Microwave-assisted synthesis and characterization of polyacrylamide grafted cellulose derived from waste newspaper for surface waterer treatment. Desal. Wat Treat. 259 (2022) 90-97.

DOI: 10.5004/dwt.2022.28464

Google Scholar

[14] S. Pal, T. Nasim, A. Patra, S. Ghosh, A.B. Panda, Microwave assisted synthesis of polyacrylamide grafted dextrin (Dxt-g-PAM): development and application of a novel polymeric flocculant. Inter. J. Bio. Macromol. 47 (2010) 623-631.

DOI: 10.1016/j.ijbiomac.2010.08.009

Google Scholar

[15] G. Rozo, L. Bohorques, J. Santamaria, Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel, Polim. 29 (2019).

DOI: 10.1590/0104-1428.02719

Google Scholar

[16] H. Liu, F. Liu, Y. Ma, H. D. Goff, F. Zhong, Versatile preparation of spherically and mechanically controllable liquid-core-shell alginate-based bead through interfacial gelation, Carb. Pol. 236 (2020) 115980.

DOI: 10.1016/j.carbpol.2020.115980

Google Scholar

[17] V. Singh, A. Tiwari, S. Pandey, S. K. Singh, Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation, Expr. Polym. Lett. 1 (2007).

DOI: 10.3144/expresspolymlett.2007.10

Google Scholar

[18] S. Distantina, N. Hidayatun, S. A. Nabila, M. Kaavessina, F. Fadilah, Effect of acrylamide and potassium peroxodisulphate on the quality of bead gel based on cassava bagasse-carrageenan using microwave grafting method, Equil. J. Chem. Eng. 6 (2022) 135-142.

DOI: 10.20961/equilibrium.v6i2.68130

Google Scholar

[19] T. Erceg, T. Dapčević Hadnađev, M. Hadnađev, I. Ristić, Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels, Coll. and Polym. Sci. 299 (2021) 11-23.

DOI: 10.1007/s00396-020-04763-9

Google Scholar

[20] H. Schott. Swelling Kinetics of Polymers. J. Macromol. Sci.-Phys. 31(1992)1-9.

Google Scholar

[21] A. Kalhapure, R. Kumar, V. Singh, D. S. Pandey, Hydrogels: A Boon for Increasing Agricultural Productivity in Water-Stressed Environment, Curr. Sci. 111 (2016) 1773- 1779.

DOI: 10.18520/cs/v111/i11/1773-1779

Google Scholar

[22] D. Swantomo, Rochmadi, K. T. Basuki, R. Sudiyo, Synthesis and characterization of graft copolymer rice straw cellulose-acrylamide hydrogels using gamma irradiation, Atom. Indo. 39 (2013) 57-64.

DOI: 10.17146/aij.2013.232

Google Scholar

[23] Flory. P. J, Principle of polymer chemistry, Cornell University Press, New York, 1953.

Google Scholar

[24] Y. Xie, A. Wang, Study on Superabsorbent Composites XIX. Synthesis, characterization and performance of chitosan-g-poly (acrylic acid)/vermiculite superabsorbent composites. Polym. Res. 16 (2009) 143-150.

DOI: 10.1007/s10965-008-9212-4

Google Scholar

[25] Erizal, D. P. Perkasa, B. Abbas, S. Sudirman, G. S. Sulistioso, Fast swelling superabsorbent hydrogels starch based prepared by gamma radiation techniques. Ind. J. Chem. 14 (2014).

DOI: 10.22146/ijc.21235

Google Scholar

[26] An. Li, J. Zhang, A. Wang, Utilization of starch and clay for the preparation of superabsorbent composite, Biores. Tech. 98 (2007) 327-332.

DOI: 10.1016/j.biortech.2005.12.026

Google Scholar

[27] R. Singhal, R. S. Tomar, A. K. Nepal, Effect of cross-linker and initiator concentration on the swelling behaviour and network parameters of superabsorbent hydrogels based on acrylamide and acrylic acid, Inter. J. Plast. Tech. 13 (2009) 22-37.

DOI: 10.1007/s12588-009-0004-4

Google Scholar

[28] P. Susmanto, A. R. Putri, M. Z. Nugraha, Production of superabsorbent biopolymer from modified cellulose-based polivinyl alcohol with variation of the number of initiator and crosslink agent, J. Ecolog. Eng. 24 (2023) 98-108.

DOI: 10.12911/22998993/162786

Google Scholar

[29] B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions, Carb. Polym. 224 (2019) 1-8.

DOI: 10.1016/j.carbpol.2019.115022

Google Scholar

[30] S. Duperkova, K. Filatova, J. Cisar, A. Ronzova, E. Kutalkova, V. Sedlariket, A novel hydrogel based on renewable materials for agricultural application, J. Polym. Sci. 2020 (2020) 1-13.

DOI: 10.1155/2020/8363418

Google Scholar

[31] T. Jiang, F. Chen, Q. Duan, X.  Bao, S. Jiang, H. Liu, L. Chen, L. Yu, Designing and application of reactive extrusion with twice initiations for graft copolymerization of acrylamide on starch, Eur. Polym. J. 165 (2022) 1-10.

DOI: 10.1016/j.eurpolymj.2022.111008

Google Scholar