Experimental Measurements and GEANT4 Simulation of NaI(Tl) Scintillator Detector

Article Preview

Abstract:

Thallium-doped sodium iodide NaI(Tl) is one of the major scintillators that have been used for radiation detection. In this study, 2"x1.5" cylindrical NaI(Tl) detector was modelled using Monte Carlo simulation code GEANT4 in order to reproduce experimental results using standard point-like gamma sources (60Co, 22Na, 137Cs) emitting mono-energetic gammas in the photon energy range 511-1332.5 keV. The modelled NaI(Tl) detector has been used to calculate the absolute and intrinsic efficiencies, as well as the mass attenuation coefficients for three different absorbers: lead (Pb), aluminum (Al), and copper (Cu) at various energies and thicknesses. The experimental and simulated data showed good agreement with a correlation coefficient (R2) of 0.9522 and a mean absolute error (MAE) of 2.03%, confirming the robustness of the simulation models implemented in the GEANT4 simulation toolkit and validate its use for accurately modeling the performance of NaI(Tl) detectors. The findings provide a reliable framework for extending the application of GEANT4 simulations in nuclear instrumentation, radiation protection, and medical physics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1173)

Pages:

83-96

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.F. Knoll, Radiation detection and measurement, John Wiley & Sons, ISBN 0470131489. 2010.

Google Scholar

[2] Y. Zhang, C. Li, D. Liu, Y. Zhang, Y. Liu, Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment. Applied Radiation and Isotopes, 98, (2015) 44–48.

DOI: 10.1016/j.apradiso.2015.01.009

Google Scholar

[3] I. Akkurt, K. Gunoglu, S.S. Arda, Detection Efficiency of NaI(Tl) Detector in 511–1332 keV Energy Range. Special issue: Interaction of Radiation with Matter and Related Topics, 186798 (2014).

DOI: 10.1155/2014/186798

Google Scholar

[4] A. Jehouani, R. Ichaoui, M. Boulkheir, Study of the NaI(Tl) efficiency by Monte Carlo method. Appl Radiat Isotopes.; 53 (2000) 887–91.

DOI: 10.1016/s0969-8043(00)00254-2

Google Scholar

[5] A. Hamzawy, Simple analytical formula to calculate γ-ray cylindrical detectors efficiencies, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 624, Issue 1, (2010) Pages 125-129.

DOI: 10.1016/j.nima.2010.09.013

Google Scholar

[6] J.C. Aguiar, An analytical calculation of the peak efficiency for cylindrical sources perpendicular to the detector axis in gamma-ray spectrometry. Applied Radiation and Isotopes. Volume 66, Issue 8, (2008) Pages 1123-1127.

DOI: 10.1016/j.apradiso.2007.12.007

Google Scholar

[7] J. Gouriou, The use of Monte Carlo codes in the establishment of dosimetric standards for ionizing radiation. Revue française de métrologie no 29, (2012) Volume 2012-1.

DOI: 10.1051/rfm/2012003

Google Scholar

[8] A. Sarnelli, M. Negrini, V. D'Errico, D. Bianchini, L. Strigari, E. Mezzenga, E. Menghi, F. Marcocci, M. Benassi, Monte Carlo based calibration of an air monitoring system for gamma and beta+ radiation. Applied Radiation and Isotopes. Volume 105, (2015) Pages 273-277.

DOI: 10.1016/j.apradiso.2015.08.040

Google Scholar

[9] H.B. Olaniyi, A.A. Owojori, F.S. Olise, Monte Carlo simulation of a NaI[Tl] detector's response function. Journal of Instrumentation, 12(12), (2017) P12015–P12015.

DOI: 10.1088/1748-0221/12/12/p12015

Google Scholar

[10] H.O. Tekin, G. Almisned, S.A.M. Issa, H.M.H. Zakaly, G. Kilic, A. Ene, Calculation of NaI(Tl) detector efficiency using 226Ra, 232Th, and 40K radioisotopes: Three-phase Monte Carlo simulation study. Open Chemistry; 20: (2022) 541–549.

DOI: 10.1515/chem-2022-0169

Google Scholar

[11] I. Mouhti, A. Elanique, M.Y. Messous, Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code. Journal of Materials and Environmental Sciences. Volume 8, Issue 12, (2017) Page 4560-4565.

DOI: 10.26872/jmes.2017.8.12.481

Google Scholar

[12] N. Yavuzkanat, D. Güngür, S. Yalçin, The Determination of the Total Efficiency for NaI(Tl) Detector by GATE Simulation. BEU Journal of Science. 8 (Special Issue), (2019) 37-45.

DOI: 10.17798/bitlisfen.649129

Google Scholar

[13] S. Hurtado, M. Garcı́a-León, R. Garcı́a-Tenorio, GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 518, Issue 3, (2014) Pages 764-774.

DOI: 10.1016/j.nima.2003.09.057

Google Scholar

[14] ORTEC GammaVision-32, version 6.01: HPGe Gamma Ray Spectrum Analysis and MCA Emulation. User Manual, AMETEK, Inc., June 2007, USA.

Google Scholar

[15] J. Beutel, H. L. Kundel, R.L. Van Metter. Handbook of Medical Imaging. ISBN: 9780819477729, 2000.

Google Scholar

[16] S. Agostinelli, et al., Geant4 - A Simulation Toolkit, Nucl. Instrum. Meth. A 506, (2003) 250-303.

DOI: 10.1016/S0168-9002(03)01368-8

Google Scholar

[17] E. Georgali, N. Patronis, A. Anastasiadis, M. Axiotis, S. Harissopulos, K. Karfopoulos, M. Kokkoris, A. Lagoyannis, C. Potiriadis, R. Vlastou, Using GEANT4 Monte Carlo simulations to resolve low energy -ray spectra: The study of 164Hog+m decay using a broad energy HPGe detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 985, (2021) 164711.

DOI: 10.1016/j.nima.2020.164711

Google Scholar

[18] M.J. Berger, J.H. Hubbell, XCOM. Version 3.1. NIST Standard Reference Data Base, 1999.

Google Scholar

[19] M.T. Teli, C.S. Mahajan, R. Nathuram, Measurement of mass and linear attenuation coefficients of gamma rays for various elements through aqueous solution of salts. Indian Journal of Pure & A pplied Physics. vol, 39, (2011) pp. R 1 6-824.

Google Scholar

[20] R. Thoraeus, Attenuation of Gamma Radiation from 60Co, 137Cs, 192Ir, and 226Ra in Various Materials Used in Radiotherapy, Acta Radiologica: Therapy, Physics, Biology. 3:2, (1965) 81-86.

DOI: 10.3109/02841866509133082

Google Scholar

[21] M.E. Medhat, Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Annals of Nuclear Energy, vol, 62, (2013) pp, 316–320.

DOI: 10.1016/j.anucene.2013.06.034

Google Scholar