[1]
G.F. Knoll, Radiation detection and measurement, John Wiley & Sons, ISBN 0470131489. 2010.
Google Scholar
[2]
Y. Zhang, C. Li, D. Liu, Y. Zhang, Y. Liu, Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment. Applied Radiation and Isotopes, 98, (2015) 44–48.
DOI: 10.1016/j.apradiso.2015.01.009
Google Scholar
[3]
I. Akkurt, K. Gunoglu, S.S. Arda, Detection Efficiency of NaI(Tl) Detector in 511–1332 keV Energy Range. Special issue: Interaction of Radiation with Matter and Related Topics, 186798 (2014).
DOI: 10.1155/2014/186798
Google Scholar
[4]
A. Jehouani, R. Ichaoui, M. Boulkheir, Study of the NaI(Tl) efficiency by Monte Carlo method. Appl Radiat Isotopes.; 53 (2000) 887–91.
DOI: 10.1016/s0969-8043(00)00254-2
Google Scholar
[5]
A. Hamzawy, Simple analytical formula to calculate γ-ray cylindrical detectors efficiencies, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 624, Issue 1, (2010) Pages 125-129.
DOI: 10.1016/j.nima.2010.09.013
Google Scholar
[6]
J.C. Aguiar, An analytical calculation of the peak efficiency for cylindrical sources perpendicular to the detector axis in gamma-ray spectrometry. Applied Radiation and Isotopes. Volume 66, Issue 8, (2008) Pages 1123-1127.
DOI: 10.1016/j.apradiso.2007.12.007
Google Scholar
[7]
J. Gouriou, The use of Monte Carlo codes in the establishment of dosimetric standards for ionizing radiation. Revue française de métrologie no 29, (2012) Volume 2012-1.
DOI: 10.1051/rfm/2012003
Google Scholar
[8]
A. Sarnelli, M. Negrini, V. D'Errico, D. Bianchini, L. Strigari, E. Mezzenga, E. Menghi, F. Marcocci, M. Benassi, Monte Carlo based calibration of an air monitoring system for gamma and beta+ radiation. Applied Radiation and Isotopes. Volume 105, (2015) Pages 273-277.
DOI: 10.1016/j.apradiso.2015.08.040
Google Scholar
[9]
H.B. Olaniyi, A.A. Owojori, F.S. Olise, Monte Carlo simulation of a NaI[Tl] detector's response function. Journal of Instrumentation, 12(12), (2017) P12015–P12015.
DOI: 10.1088/1748-0221/12/12/p12015
Google Scholar
[10]
H.O. Tekin, G. Almisned, S.A.M. Issa, H.M.H. Zakaly, G. Kilic, A. Ene, Calculation of NaI(Tl) detector efficiency using 226Ra, 232Th, and 40K radioisotopes: Three-phase Monte Carlo simulation study. Open Chemistry; 20: (2022) 541–549.
DOI: 10.1515/chem-2022-0169
Google Scholar
[11]
I. Mouhti, A. Elanique, M.Y. Messous, Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code. Journal of Materials and Environmental Sciences. Volume 8, Issue 12, (2017) Page 4560-4565.
DOI: 10.26872/jmes.2017.8.12.481
Google Scholar
[12]
N. Yavuzkanat, D. Güngür, S. Yalçin, The Determination of the Total Efficiency for NaI(Tl) Detector by GATE Simulation. BEU Journal of Science. 8 (Special Issue), (2019) 37-45.
DOI: 10.17798/bitlisfen.649129
Google Scholar
[13]
S. Hurtado, M. Garcı́a-León, R. Garcı́a-Tenorio, GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 518, Issue 3, (2014) Pages 764-774.
DOI: 10.1016/j.nima.2003.09.057
Google Scholar
[14]
ORTEC GammaVision-32, version 6.01: HPGe Gamma Ray Spectrum Analysis and MCA Emulation. User Manual, AMETEK, Inc., June 2007, USA.
Google Scholar
[15]
J. Beutel, H. L. Kundel, R.L. Van Metter. Handbook of Medical Imaging. ISBN: 9780819477729, 2000.
Google Scholar
[16]
S. Agostinelli, et al., Geant4 - A Simulation Toolkit, Nucl. Instrum. Meth. A 506, (2003) 250-303.
DOI: 10.1016/S0168-9002(03)01368-8
Google Scholar
[17]
E. Georgali, N. Patronis, A. Anastasiadis, M. Axiotis, S. Harissopulos, K. Karfopoulos, M. Kokkoris, A. Lagoyannis, C. Potiriadis, R. Vlastou, Using GEANT4 Monte Carlo simulations to resolve low energy -ray spectra: The study of 164Hog+m decay using a broad energy HPGe detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Volume 985, (2021) 164711.
DOI: 10.1016/j.nima.2020.164711
Google Scholar
[18]
M.J. Berger, J.H. Hubbell, XCOM. Version 3.1. NIST Standard Reference Data Base, 1999.
Google Scholar
[19]
M.T. Teli, C.S. Mahajan, R. Nathuram, Measurement of mass and linear attenuation coefficients of gamma rays for various elements through aqueous solution of salts. Indian Journal of Pure & A pplied Physics. vol, 39, (2011) pp. R 1 6-824.
Google Scholar
[20]
R. Thoraeus, Attenuation of Gamma Radiation from 60Co, 137Cs, 192Ir, and 226Ra in Various Materials Used in Radiotherapy, Acta Radiologica: Therapy, Physics, Biology. 3:2, (1965) 81-86.
DOI: 10.3109/02841866509133082
Google Scholar
[21]
M.E. Medhat, Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Annals of Nuclear Energy, vol, 62, (2013) pp, 316–320.
DOI: 10.1016/j.anucene.2013.06.034
Google Scholar