[1]
Lapina, O.B.; Bal'zhinimaev, B.S.; Boghosian, S.; Eriksen, K.M.; Fehrmann, R. Progress on the mechanistic understanding of SO2 oxidation catalysts. Catal Today 1999, 51, 469–479.
DOI: 10.1016/s0920-5861(99)00034-6
Google Scholar
[2]
Rao, S.V.; Yang, D.H.; Sohn, J.S.; Kim, S.K. Purification of sulphate leach liquor of spent raneynickel catalyst containing Al and Ni by solvent extraction with organophosphorus-based extractants. The Scientific World Journal 2012, 2012,.
DOI: 10.1100/2012/286494
Google Scholar
[3]
Long, H. ming; Zhang, Y. dong; Yang, T.; Qian, L. xin; Yu, Z. wei A promising method to recover spent V2O5–WO3/TiO2 catalyst: treatment by vanadium–titanium magnetite sintering process. Journal of Iron and Steel Research International 2022, 29, 1176–1184.
DOI: 10.1007/s42243-021-00676-1
Google Scholar
[4]
Furimsky, E. Spent refinery catalysts: Environment, safety and utilization. Catal Today 1996, 30, 223–286.
DOI: 10.1016/0920-5861(96)00094-6
Google Scholar
[5]
Charry, I.D.; María González, L. Characterization by temperature programmed techniques of spent and acid treated vanadium catalysts Caracterización por técnicas de la temperatura programada de catalizadores de vanadio desactivados y tratados con ácido. Enero: 2011.
DOI: 10.17533/udea.redin.14641
Google Scholar
[6]
Akola, J.; Unnikrishnan, P.; Joshi, M.B.; Chinthala, P.K.; Dhaduk, B. Insight studies on the deactivation of sulfuric acid regeneration catalyst. Journal of the Indian Chemical Society 2024, 101, 101140.
DOI: 10.1016/j.jics.2024.101140
Google Scholar
[7]
H.REGUIG Synthèse et caractérisation des catalyseurs à base de vanadium : VO2-MxOy (M = Ti, Si, Al, Zr, Ce).pplication à l'oxydation du cyclohexène. 2013.
Google Scholar
[8]
Aboelfetoh, E.F.; Pietschnig, R. Preparation and catalytic performance of Al2O3, TiO2 and SiO2 supported vanadium based-catalysts for C-H activation. Catal Letters 2009, 127, 83–94.
DOI: 10.1007/s10562-008-9634-y
Google Scholar
[9]
Adam, F.; Chew, T.-S.; Andas, J. Cite this article as: Chin. CHINESE JOURNAL OF CATALYSIS 2012, 33, 518–522.
Google Scholar
[10]
Barbosa, G.N.; Oliveira, H.P. Synthesis and characterization of V2O5–SiO2 xerogel composites prepared by base catalysed sol–gel method. J Non Cryst Solids 2006, 352, 3009–3014.
DOI: 10.1016/j.jnoncrysol.2006.04.009
Google Scholar
[11]
Murgia, V.; Torres, E.M.F.; Gottifredi, J.C.; Sham, E.L. Sol–gel synthesis of V2O5–SiO2 catalyst in the oxidative dehydrogenation of n-butane. Appl Catal A Gen 2006, 312, 134–143.
DOI: 10.1016/j.apcata.2006.06.042
Google Scholar
[12]
Barbosa, G.; solids, H.O.-J. of non-crystalline; 2006, undefined Synthesis and characterization of V2O5–SiO2 xerogel composites prepared by base catalysed sol–gel method. Elsevier.
DOI: 10.1016/j.jnoncrysol.2006.04.009
Google Scholar
[13]
Iannazzo, V.; Neri, G.; Galvagno, S.; Di Serio, M.; Tesser, R.; Santacesaria, E. Oxidative dehydrogenation of isobutane over V2O5-based catalysts prepared by grafting vanadyl alkoxides on TiO2 SiO2 supports. Appl Catal A Gen 2003, 246, 49–68.
DOI: 10.1016/s0926-860x(02)00668-3
Google Scholar
[14]
Pârvulescu, V.; Anastasescu, C.; Su, B.L. Vanadium incorporated mesoporous silicates as catalysts for oxidation of alcohols and aromatics. J Mol Catal A Chem 2003, 198, 249–261.
DOI: 10.1016/s1381-1169(02)00694-5
Google Scholar
[15]
Abello, L.; Husson, E.; Repelin, Y.; Lucazeau, G. Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta A 1983, 39, 641–651.
DOI: 10.1016/0584-8539(83)80040-3
Google Scholar